Hansen Architectural Systems
5500 SE Alexander ST
Hillsboro, OR 97124

## SUBJ: ALUMINUM FRAMED RAILING <br> PICKET, CABLE AND GLASS INFILL SYSTEMS <br> SERIES 100, 200, 300, 350 AND 400 SERIES SYSTEMS

The Hansen Aluminum Railing System (ARS) utilizes aluminum extrusions with infills to construct building guards and rails for decks, balconies, stairs, fences and similar locations. The system is intended for interior and exterior weather exposed applications and is suitable for use in most natural environments except for highly corrosive environments. The RS may be used for residential, commercial and industrial applications. The ARS is an engineered system designed for the following criteria:

The design loading conditions are:
On Top Rail:
Concentrated load $=200$ lbs any direction, any location
Uniform load $=50 \mathrm{plf}$, any perpendicular to rail
On In-fill Panels:
Concentrated load $=50 \#$ on one $s f$.
Distributed load $=25 \mathrm{psf}$ on area of in-fill, including spaces
Wind load $=28.5 \mathrm{psf}$ typical installation (higher wind loads may be allowed based on post spacing and anchorage method)
Refer to IBC Section 1607.7.1 for loading.
The ARS system will meet or exceed all requirements of the 2000, 2003, 2006, 2009, 2012, 2015 and 2018 International Building Codes and International Residential Codes, and state building codes based on these versions of the IBC, and the 2015 Aluminum Design Manual. Wood components and anchorage to wood are designed in accordance with the 2015 National Design Specification for Wood Construction.

Edward Robison, P.E.

Typical Installations:
Refer to Guard Posts Mounted To Wood Decks Residential Installations 42" Guard Height report for other details and mounting requirements for mounting to wood framing in compliance with the 2018 IBC and 2018 IRC.

## Surface mounted with base plates:

Residential Applications:
Rail Height 36" or 42" above finish floor.
Standard Post spacing 6' on center maximum.
Bottom rail intermediate post required over 5'.
All top rails
Commercial and Industrial Applications:
Rail Height 42 " above finish floor.
Standard Post spacing 5' on center maximum.
All top rails

## Core pocket /embedded posts or stainless steel stanchion mounted:

Residential Applications:
Rail Height 36 " or 42 " above finish floor.
Standard Post spacing 6' on center maximum, series 100
$8^{\prime}$ on center Series 200, 300, 350 and 400.
Bottom rail intermediate post required over 5 '.
Commercial and Industrial Applications:
Rail Height 42" above finish floor.
Standard Post spacing 6' on center maximum, series 100
$6^{\prime}$ on center Series 200, 300, 350 and 400.

| Contents: | Page: |
| :--- | :--- |
| Signature/Stamp Page | 3 |
| Load Cases | 4 |
| Wind loading | 5 |
| Glass Infill | $6-11$ |
| Posts and mountings | $12-36$ |
| Series 100 | $37-40$ |
| Top Rails | $41-54$ |
| Bottom Rails | $55-56$ |
| Mid Rails | $57-58$ |
| Rail Connection Block | 59 |
| Rail End Caps | $60-61$ |
| Wood Fastener Tables | $62-64$ |


| Contents: | Page: |
| :--- | :--- |
| Picket Infills | $65-68$ |
| Grab Rails and Brackets | $69-73$ |
| Cable Infills | $74-84$ |

SIGNED:
11 Apr 2018


## LOAD CASES:

Glass rail Dead load $=5$ plf for 42 " rail height or less.

Loading:
Horizontal load to top rail from in-fill:
$25 \mathrm{psf} * \mathrm{H} / 2$
Post moments
$\mathrm{M}_{\mathrm{i}}=25 \mathrm{psf} * \mathrm{H}^{*} \mathrm{~S} * \mathrm{H} / 2=$

$$
=12.5 * \mathrm{~S} * \mathrm{H}^{2}
$$

For top rail loads:
$\mathrm{M}_{\mathrm{c}}=200 \# * \mathrm{H}$
$\mathrm{M}_{\mathrm{u}}=50 \mathrm{plf} * \mathrm{~S} * \mathrm{H}$
For wind load surface area:
$\mathrm{M}_{\mathrm{w}}=\mathrm{w} \mathrm{psf}^{*} \mathrm{H}^{*} \mathrm{~S}^{*} \mathrm{H}^{*} 055=$ $=0.55 \mathrm{w} * \mathrm{~S}^{*} \mathrm{H}^{2}$

Solving for w :
$\mathrm{w}=\mathrm{M} /\left(0.55 * \mathrm{~S}^{*} \mathrm{H}^{2}\right)$


Wind load equivalent for 42 " rail height, 5 ' post spacing 50 plf top rail load:
$\mathrm{M}_{\mathrm{u}}=50 \mathrm{pl} \mathrm{F}^{*} 5^{\prime} * 3.5^{\prime}=875 \#^{\prime}=10,500 \#$ '
$\mathrm{w}=875 /\left(0.55 * 5^{*} 3.5^{2}\right)=26 \mathrm{psf}$
Allowable wind load adjustment for other post spacing:
$\mathrm{w}=26^{*}(5 / \mathrm{S})$

## WIND LOADING

For wind load surface area is full area of guard:
Calculated in accordance with ASCE/SEI 7-05 Section 6.5.14 Design Wind Loads on Solid
Freestanding Walls and Solid Signs (or ASCE/SEI 7-10 Chapter 29.4). This section is applicable for free standing building guardrails, wind walls and balcony railings that return to building walls. Section 6.5.12.4.4 (29.6) Parapets may be applicable when the rail is along a roof perimeter. Wind loads must be determined by a qualified individual for a specific

## installation.

$\mathrm{p}=\mathrm{q}_{\mathrm{p}}\left(\mathrm{GC}_{\mathrm{p}}\right)=\mathrm{q}_{\mathrm{z}} \mathrm{GC}_{\mathrm{f}}$ (ASCE 7-05 eq. 6-26 or 7-10 eq. 29.4-1)
$\mathrm{G}=0.85$ from section 6.5.8.2 ( sec 26.9.4.)
$\mathrm{C}_{\mathrm{f}}=2.5 * 0.8 * 0.6=1.2$ Figure 6-20 (29.4-1) with reduction for solid and end returns, will vary.
$\mathrm{Q}_{\mathrm{z}}=\mathrm{K}_{\mathrm{z}} \mathrm{K}_{\mathrm{zt}} \mathrm{K}_{\mathrm{d}} \mathrm{V}^{2} \mathrm{I}$ Where:
$\mathrm{I}=1.0$
$\mathrm{K}_{\mathrm{z}}$ from Table 6-3 (29.3-1) at the height z of the railing centroid and exposure.
$\mathrm{K}_{\mathrm{d}}=0.85$ from Table 6-4 (Table 26-6).
$\mathrm{K}_{\mathrm{zt}}$ From Figure 6-4 (Fig 26.8-1) for the site topography, typically 1.0.
$\mathrm{V}=$ Wind speed (mph) 3 second gust, Figure 6-1 (Fig 26.5-1A) or per local authority.
Simplifying - Assuming $1.3 \leq \mathrm{C}_{\mathrm{f}} \leq 2.6$ (Typical limits for fence or guard with returns.)
For $\mathrm{C}_{\mathrm{f}}=1.3: \mathrm{F}=\mathrm{q}_{\mathrm{h}}{ }^{*} 0.85^{*} 1.3=1.11 \mathrm{q}_{\mathrm{h}}$
For $\mathrm{C}_{\mathrm{f}}=2.6: \mathrm{F}=\mathrm{q}_{\mathrm{h}} * 0.85 * 2.6=2.21 \mathrm{q}_{\mathrm{h}}$
Wind Load will vary along length of fence in accordance with ASCE 7-05 Figure 6-20 (29.4-1).
Typical exposure factors for $\mathrm{K}_{\mathrm{z}}$ with height 0 to 15 ' above grade:
Exposure B C D
$\begin{array}{llll}\mathrm{K}_{\mathrm{z}}= & 0.70 & 0.85 & 1.03\end{array}$
MINIMUM WIND LOAD TO BE USED IS 10 PSF.
Centroid of wind load acts at 0.55 h on the fence.
Typical wind load range for $\mathrm{I}=1.0$ and $\mathrm{K}_{\mathrm{zt}}=1.0$
Table 1: $\quad$ Wind load in psf $\mathbf{C}_{\mathbf{f}}=\mathbf{1 . 3}$

| Wind Speed | B | C | D | B | C | D |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| V | $0.00169 \mathrm{~V}^{2}$ | $0.00205 \mathrm{~V}^{2}$ | $0.00249 \mathrm{~V}^{2}$ | $0.00337 \mathrm{~V}^{2}$ | $0.00409 \mathrm{~V}^{2}$ | $0.00495 \mathrm{~V}^{2}$ |
| 85 | 12.2 | 14.8 | 17.9 | 24.3 | 29.5 | 35.8 |
| 90 | 13.7 | 16.6 | 20.2 | 27.3 | 33.1 | 40.1 |
| 100 | 16.9 | 20.5 | 24.9 | 33.7 | 36.9 | 49.5 |
| 110 | 20.5 | 24.8 | 30.1 | 40.7 | 49.5 | 59.9 |
| 120 | 24.3 | 29.6 | 35.8 | 48.5 | 58.9 | 71.3 |
| 130 | 28.6 | 34.7 | 42.0 | 56.9 | 69.1 | 83.7 |
| 140 | 33.1 | 40.2 | 48.8 | 66.0 | 80.1 | 97.1 |

Where guard ends without a return the wind forces may be as much as 1.667 times $\mathrm{C}_{\mathrm{f}}=2.6$ value.
When $\mathrm{I}=0.87$ is applicable (occupancy category I) multiply above loads by 0.87 .
For wind loads based on ASCE 7-10 wind speeds, figures 26.5-1A, B and C, multiply the wind loads by 0.6 to convert to Allowable Stress Design loads.
For example - Exp B with $\mathrm{C}_{\mathrm{f}}=1.3 ; 7-05$ wind speed $=85 \mathrm{mph} \mathrm{w}=12.2 \mathrm{psf}$ :
$7-10$ wind speed $=110 \mathrm{mph} \mathrm{w}=0.6 * 20.5=12.3 \mathrm{psf}$ (ASD wind loads used herein)
EDWARD C. ROBISON, PE
10012 Creviston Dr NW
Gig Harbor, WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com

## GLASS STRENGTH FULLY TEMPERED INFILL PANELS

All glass is fully tempered glass conforming to the specifications of ANSI Z97.1, ASTM C 1048-97b and CPSC 16 CFR 1201. The average Modulus of Rupture for the glass $\mathrm{F}_{\mathrm{r}}$ is 24,000 psi. In accordance with UBC 2406.6 or IBC 2407.1 .1 glass used as structural balustrade panels shall be designed for a safety factor of 4.0. This is applicable only to structural panels (glass provides support to railing). Glass not used in guardrails may be designed for a safety factor of 2.5 in accordance with ASTM E1300-12a.

Values for the modulus of rupture, $\mathrm{F}_{\mathrm{R}}$, modulus of Elasticity, E and shear modulus, G for glass are typically taken as (see AAMA CW-12-84 Structural Properties of Glass) :
$\mathrm{F}_{\mathrm{R}}=24,000 \mathrm{psi}$.
$\mathrm{E}=10,400 \mathrm{ksi}$. While the value of E for glass varies with the stress and load duration this value is typically used as an average value for the stress range of interest.
$\mathrm{G}=3,800 \mathrm{ksi}$ : This is rarely used when checking the deflection in glass. The shear component of the deflection tends to be very small, under $1 \%$ of the bending component and is therefore ignored.
$\mu=0.22$ (Typical value of Poisson's ratio for common glasses.
The safety factor of 4 is dictated by the building code (IBC 2407.1.1). It is applied to the modulus of rupture since glass does not have a yield stress.

There is no deflection limits for the glass in guards other than practical limits for the opening sizes, retention in the frames and occupant comfort. Refer to ASTM E 1300-12a for a standard method of calculating deflections but the deflection limits are concerned with glazing in windows and similar parts of the building envelope rather than a free standing guard. IBC 2403.3 applies a limit of $\mathrm{L} / 175$ or $3 / 4$ " for the supporting frame. From IBC Table 1604.3 footnote h similar types of construction have a limit of L/60. ICC AC 273 Acceptance Criteria for Handrails and Guards paragraph 4.2.4 applies a deflection limit of $\mathrm{h} / 12$ to the posts and $\mathrm{L} / 96$ to the top rail.

The shear strength of glass tracks closely to the modulus of rupture because failure under shear load will be a tensile failure with strength limited by the modulus of rupture. Thus shear loads are transformed using Mohr's circle to determine the critical tension stress to evaluate the failure load. The safety factor of 4 is applicable to this case same as the bending case. Thus the shear stress is limited based on principal stresses of 0 and 6,000 psi to $6,000 / 2=3,000$ psi.
Bearing stress can be derived in a similar fashion with the principal stresses being $-6,000 \mathrm{psi}$ and $6,000 \mathrm{psi}$ so the bearing stress $=6,000 \mathrm{psi}$.

Bending strength of glass for the given thickness:
$\mathrm{I}=122^{*} *(\mathrm{t})^{3} / 12=(\mathrm{t})^{3} \mathrm{in}^{3} / \mathrm{ft}$
$\mathrm{S}=12 " *(\mathrm{t})^{2} / 6=2^{*}(\mathrm{t})^{2} \mathrm{in}^{3} / \mathrm{ft}$

For lites simply supported on two opposite sides the moment and deflection are calculated from basic beam theory:

$$
\mathrm{M}_{\mathrm{w}}=\mathrm{W}^{*} \mathrm{~L}^{2} / 8 \text { for uniform load } \mathrm{W} \text { and span } \mathrm{L} \text { or }
$$

$\mathrm{M}_{\mathrm{p}}=\mathrm{P} * \mathrm{~L} / 4$ for concentrated load P and span L , highest moment $\mathrm{P} @$ center
Maximum wind loads:

$$
\mathrm{W}=\mathrm{M}_{\mathrm{a}} * 8 / \mathrm{L}^{2} \text { for uniform load } \mathrm{W} \text { and span } \mathrm{L} \text { (rail to rail distance) }
$$

Deflection can be calculated using basic beam theory:

$$
\Delta=\left(1-v^{2}\right) 5 \mathrm{wL}^{4} /(384 \mathrm{EI}) \text { for uniform load }
$$

For concentrated load:

$$
\Delta=\left(1-v^{2}\right) \mathrm{PL}^{3} /(48 \mathrm{EI})
$$

Maximum allowable deflection: Use L/60 deflection limit for infill. This will prevent glass from deflecting enough to disengage from the frame.

For uniform load (wind load)
Solving for w

$$
w=\left[t^{3 *} 1.676^{*} 10^{8}\right] / L^{3}
$$

Solving for L

$$
\mathrm{L}=\left[\left(\mathrm{t}^{3} * 1.676^{*} 10^{8}\right) / \mathrm{w}\right]^{1 / 3}
$$

Solving for t

$$
t=\left[L^{3} w /\left(1.676^{*} 10^{8}\right)\right]^{1 / 3}
$$

For Concentrated load
Solving for P

$$
\mathrm{P}=\left(8.74 * 10^{6} t^{3}\right) / \mathrm{L}^{2}
$$

Solving for L

$$
\mathrm{L}=\left[8.74 * 10^{6 *} \mathrm{t}^{3} / \mathrm{P}\right]^{1 / 2}
$$

Solving for t

$$
\mathrm{t}=\left[\mathrm{PL}^{2} /\left(8.74 * 10^{6}\right)\right]^{1 / 3}
$$

From IBC 2407 the minimum nominal glass thickness for infill panels in guards is $1 / 4$ "

## 1/4" FULLY TEMPERED GLASS

Weight $=2.89 \mathrm{psi}$
$\mathrm{t}_{\text {ave }}=0.223$ "
For 1/4" glass $\mathrm{S}=2^{*}(0.223)^{2}=0.0995 \mathrm{in}^{3} / \mathrm{ft}$

$$
\mathrm{M}_{\text {allowable }}=6,000 \mathrm{psi}^{*} 0.0995 \mathrm{in}^{3} / \mathrm{ft}=597 \#{ }^{\prime \prime} / \mathrm{ft}
$$

For FS $=2.5$ (no fall hazard, glass fence or wind screen)

$$
\mathrm{M}_{\mathrm{all}}=597 " \# * 4 / 2.5=955 " \#
$$

Moment for $36^{\prime \prime}$ wide lite (infill for 42 " rail height) 25 psf or 50 lb load

$$
\mathrm{M}_{\mathrm{w}}=25 \mathrm{psf} * 3^{\prime} 2 * 12^{\prime \prime} / \cdot / 8=337.5^{\prime \prime} \#
$$

$$
M_{p}=50 * 36 " / 4=450 " \#
$$

Moment for 42 " wide lite (infill for 48 " rail height) 25 psf or 50 lb load

$$
\mathrm{M}_{\mathrm{w}}=25 \mathrm{psf} * 3.5^{\prime}{ }^{2} * 12^{\prime \prime} / \mathrm{P} / 8=459.4 " \#
$$

$$
\mathrm{M}_{\mathrm{p}}=50 * 42 " / 4=525 " \#
$$

for 36 " wide lite (infill for 42 " rail height)

$$
\mathrm{W}=597 " \# * 8 /\left(3^{\prime} * 36^{\prime \prime}\right)=44 \mathrm{psf}
$$

for 42 " wide lite (infill for 48 " rail height)

$$
\mathrm{W}=597 " \# * 8 /\left(3.5^{\prime} * 42^{\prime \prime}\right)=32.5 \mathrm{psf}
$$

Deflection:
$36 "$ wide lite (infill for 42 " rail height) 25 psf or 50 lb load
$\mathrm{L} / 60=36 / 60=0.60$
$\Delta=\left[\left(1-0.22^{2}\right) * 25^{*} 36^{4} / 0.25^{3}\right] /\left(9.58 \times 10^{9}\right)=0.27$ "
or $\quad \Delta=\left(1-0.22^{2}\right) * 50^{*} 36^{3} /\left(4.992 * 10^{8 *} 0.25^{3}\right)=0.285$ "

## 3/8" FULLY TEMPERED GLASS

Weight $=4.75 \mathrm{psi}$
$\mathrm{t}_{\text {ave }}=0.366$ "
For $3 / 8$ " glass $\mathrm{S}=2 *(0.366)^{2}=0.268 \mathrm{in}^{3} / \mathrm{ft}$

$$
\mathrm{M}_{\text {allowable }}=6,000 \mathrm{psi}^{*} 0.268 \mathrm{in}^{3} / \mathrm{ft}=1,607 \# \prime / \mathrm{ft}
$$

For FS $=2.5$ (no fall hazard, glass fence or wind screen)

$$
\mathrm{M}_{\mathrm{all}}=1,607 " \# * 4 / 2.5=2,571 \# "
$$

Moment for $36^{\prime \prime}$ wide lite (infill for 42 " rail height) 25 psf or 50 lb load

$$
\mathrm{M}_{\mathrm{w}}=25 \mathrm{psf}^{\prime} 3^{\prime} 2 * 12^{\prime \prime} / \prime / 8=337.5 " \#
$$

$$
M_{p}=50 * 36 " / 4=450 " \#
$$

Moment for 42 " wide lite (infill for 48 " rail height) 25 psf or 50 lb load

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{w}}=25 \mathrm{psf}^{*} * 3.5^{\prime} 2 * 12 " / / / 8=459.4 " \# \\
& \mathrm{M}_{\mathrm{p}}=50^{*} 42 " / 4=525^{\prime \prime} \#
\end{aligned}
$$

for 36" wide lite (infill for 42" rail height)
$\mathrm{W}=1,607^{\prime \prime} \# * 8 /\left(3^{\prime} * 36^{\prime \prime}\right)=119 \mathrm{psf}$
for 42 " wide lite (infill for $48^{\prime \prime}$ rail height)

$$
\mathrm{W}=1,607^{\prime} \# * 8 /\left(3.5^{\prime} * 42 "\right)=87.5 \mathrm{psf}
$$

Deflection:
$36 "$ wide lite (infill for 42 " rail height) 25 psf or 50 lb load

$$
\mathrm{L} / 60=36 / 60=0.60
$$

$$
\Delta=\left[\left(1-0.22^{2}\right)^{*} 25^{*} 36^{4} / 0.366^{3}\right] /\left(9.58 \times 10^{9}\right)=0.085 "
$$

or $\quad \Delta=\left(1-0.22^{2}\right) * 50 * 36^{3} /\left(4.992 * 10^{8 *} 0.366^{3}\right)=0.090$ "
Check maximum wind load based on deflection:
$36 "$ width $\quad \mathrm{w}=\left[0.366^{3 *} 1.676^{*} 10^{8}\right] / 36^{3}=175 \mathrm{psf}$ (does not control)
$42 "$ width $\quad \mathrm{w}=\left[0.366^{3 *} 1.676 * 10^{8}\right] / 42^{3}=110 \mathrm{psf}$ (does not control)

## LAMINATED GLASS INFILL

The 2015 and 2018 IBC require laminated glass panels where a walking surface is directly below the guard.

Glass sizes checked in this report are $1 / 4 ", 5 / 16 "$ and $7 / 16 "$
Glass is assumed to use a PVB interlayer with a shear modulus $(\mathrm{G})$ of 140 psi. This low value for G accounts for high exterior temperatures that may be present in the southern part of the US and Hawaii.

Effective thickness calculated according to ASTM E1300 appendix X11.

| Variable | Description |
| :---: | :---: |
| H1 \& H2 | Glass pane thicknesses |
| Hv | Interlayer thickness |
| E | Young's Modulus |
| g | Shear Modulus |
| Hs | $.5(\mathrm{~h} 1+\mathrm{h} 2)+\mathrm{hv}$ |
| Hs;1 | hsh1/(h1+h2) |
| Hs;1 | hsh2/(h1+h2) |
| Is | h1 (hs;2) ${ }^{2}+\mathrm{h} 2(\mathrm{hs} ; 1)^{2}$ |
| a | Minimum Pane Width |
| $\Gamma$ | $1 /\left(1+9.6\right.$ (Eishv/(G(ahs) ${ }^{2}$ ) $)$ |
| hef;w | $\left.\left.{ }^{3} \sqrt{( } \mathrm{h} 1\right)^{3}+(\mathrm{h} 2)^{3}+12 \mathrm{Cls}\right)$ |
| h1;ef; $\sigma$ | $\sqrt{ }(\text { (hef;w })^{3} /(\mathrm{h} 1+2$ Гhs; 2$)$ ) |
| h2;ef; $\sigma$ | $\sqrt{ }\left(\right.$ (hef;w) $\left.{ }^{3} /(\mathrm{h} 2+2 \Gamma \mathrm{hs} ; 1)\right)$ |

1/4" Laminated Glass:
Tempered $+0.06 "+$ tempered, $(.102 "$ glass $+0.06 "$ interlayer $+.102 "$ glass $)$


5/16" Laminated Glass:
$1 / 8 "+0.06 "+1 / 8 ",(.115 "$ glass $+0.06 "$ interlayer $+.115 "$ glass $)$


7/16" Laminated Glass:
$3 / 16^{\prime \prime}+0.06 "+3 / 16 ",(.180 "$ glass $+0.06 "$ interlayer +.180 " glass $)$


| Glass Size, tave (in) | $\mathrm{tefe}_{\text {w }}$ (in) | $t_{e f, \sigma}($ in) | $l(i n 4 / f t)$ | S (in ${ }^{3} / \mathrm{tt}$ ) | $\mathrm{W}_{\mathrm{a}}$ (psf) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1/4 | 0.201 | 0.223 | 0.0081206 | 0.099458 | 29 |
| 5/16 | 0.218 | 0.243 | 0.0103602 | 0.118098 | 37 |
| 3/8 | 0.301 | 0.337 | 0.0272709 | 0.227138 | 98 |

## 2-3/8" Square Post

6061-T6 Aluminum

4 screw post
-Area 0.995 "
$\mathrm{I}_{\mathrm{xx}}=\mathrm{I}_{\mathrm{yy}}=0.863 \mathrm{in}^{4}$
$\mathrm{S}=0.726 \mathrm{in}^{3}$
$\mathrm{Z}=0.9748 \mathrm{in}^{3}$
$\mathrm{r}=0.923$ in
$\mathrm{J}=1.341 \mathrm{in}^{4}$
$\mathrm{k} \leq 1$ for all applications
Based on 2015 ADM Chapter F


## Lateral torsional buckling:

Lateral torsional buckling may occur on posts that are unrestricted in rotation at the free end. However, typical installations involve a top rail that will restrict the post from rotating and prevent lateral torsional buckling. Testing of the ARS system has never resulted in a lateral torsional buckling failure.
$\mathrm{C}_{\mathrm{b}}=1.3$ for cantilevered beam with concentrated load at free end (ADM 15 F.4.1)
$\lambda=2.3\left(\mathrm{~L}_{\mathrm{B}} \mathrm{S}_{\mathrm{C}} /\left(\mathrm{C}_{\mathrm{b}}\left(\mathrm{I}_{\mathrm{y}} \mathrm{J}\right)^{1 / 2}\right)^{1 / 2}=2.3\left(\mathrm{~L}_{\mathrm{b}} * .726 /\left(1.3 *(.863 * 1.341)^{1 / 2}\right)\right)^{1 / 2}=1.657 \mathrm{~L}_{\mathrm{B}}{ }^{1 / 2}\right.$
Inelastic buckling controls when $\lambda<\mathrm{C}_{\mathrm{c}}=65.7$
$65.7=1.657 \mathrm{~L}_{\mathrm{B}}{ }^{1 / 2}$

$$
\mathrm{L}_{b}=1,572 "
$$

For $L_{b}=42$ "
$\lambda=1.657^{*} 42^{\prime \prime} / 2=10.74$
$\mathrm{M}_{\mathrm{nmb}}=\mathrm{M}_{\mathrm{p}}\left(1-\lambda / \mathrm{C}_{\mathrm{c}}\right)+\pi^{2} \mathrm{E} \lambda \mathrm{S}_{\mathrm{xc}} / \mathrm{C}_{\mathrm{c}}{ }^{3}$
$\mathrm{M}_{\mathrm{p}}=35 \mathrm{ksi}^{*} .9748 \mathrm{in}^{3}=34,118$ "\#
$\mathrm{M}_{\mathrm{nmb}}=34,118(1-10.74 / 65.7)+\pi^{2 *} 10.1^{*} 10^{6 *} 10.74 * .726 / 65.7^{3}=31,281 " \#$
$\mathrm{M}_{\mathrm{nmb}} / \Omega=31,281 " \# / 1.65=18,958 " \#$
Above lateral torsional buckling strengths only apply to posts installed without a top rail or some other member to restrict the top of the post against torsion.

## Yielding/Rupture/Local Buckling:

Check local buckling of post wall:
$\mathrm{b} / \mathrm{t}=1.562 " / 0.1 "=15.62<20.8$
Per ADM 15 Design Aid Table 2-19, $\mathrm{F}_{\mathrm{c}} / \Omega=21.2 \mathrm{ksi}$ (Local buckling does not apply)
Z<1.5S
$\mathrm{M}_{\mathrm{np}} / \Omega=\mathrm{ZF}_{\mathrm{y}} / \Omega=0.9748 \mathrm{in}^{3 *} 21.2 \mathrm{ksi}=20,666^{\prime \prime \prime}$ " or
$\mathrm{M}_{\mathrm{nu}} / 1.95=\mathrm{ZF}_{\mathrm{u}}=0.9748 \mathrm{in}^{3} * 38 \mathrm{ksi} / 1.95=18,996$ " $\#$ (Controls)

## Bending strength of post installed with top rail:

$\mathrm{M}_{\mathrm{a}}=19,000$ "\#

## Strong axis deflections:

$\Delta=\mathrm{PL}^{3} /(3 \mathrm{EI})=\mathrm{PL}^{3} /\left(3^{*} 10,100,000 \mathrm{psi}^{*} 0.863 \mathrm{in}^{4}\right)=\mathrm{PL}^{3} / 26,148,900$
$\mathrm{P}_{1} "=26,148,900 / \mathrm{L}^{3}$ for 42 " post height $=353$ \# (Load for $1 "$ deflection $)$
$\mathrm{L}_{1}$ " $=(26,148,900 / \mathrm{P})^{1 / 3}$ for $250 \# \mathrm{~L}=47.1$ " (Height for 1 " deflection)
For L/12 (maximum allowable post deflection from ASTM E-985 test loads)
$\mathrm{P}=\mathrm{EI} /\left(4 \mathrm{~L}^{2}\right)$ : for 42 " height:
$\mathrm{P}=10,100,000 \mathrm{psi} * 0.863 \mathrm{in}^{4} /\left(4 * 42^{2}\right)=1,235 \#-$ Deflection will not control post loads

## For posts directly fascia mounted with $3 / 8$ " bolts through post:

Reduced strength at bolt hole:
For loading parallel to bolt axis:
Assume $3 / 8^{\prime \prime}+1 / 8^{\prime \prime}$ over size $+1 / 8^{\prime \prime}$ damage $=1 / 2^{\prime \prime}$ holes both sides of post
$\mathrm{S}_{\text {red }}=0.6237 \mathrm{in}^{3}$
$\mathrm{Z}_{\text {red }}=0.7590 \mathrm{in}^{3}$

Addition of holes at base of post only affects rupture strength.
$\mathrm{M}_{\mathrm{nu}} / \Omega=\mathrm{ZF}_{\mathrm{u}} / \Omega=0.7590 \mathrm{in}^{3} * 38 \mathrm{ksi} / 1.95=14,791 " \#$
For loading perpendicular to bolt axis
$\mathrm{I}_{\mathrm{red}}=0.8750 \mathrm{in}^{4}$
$\mathrm{S}_{\mathrm{red}}=0.7365 \mathrm{in}^{3}$
$\mathrm{Z}_{\text {red }}=0.8666 \mathrm{in}^{3}$
$\mathrm{M}_{\mathrm{nu}} / \Omega=\mathrm{ZF}_{\mathrm{u}} / \Omega=0.8666 \mathrm{in}^{3}{ }^{*} 38 \mathrm{ksi} / 1.95=16,888^{\prime \prime} \#$

## 2-3/8" Square Post

## 6 Screw Post

Post Strength 6005-T5 or 6061-T6
-Area 1.1482"
$\mathrm{I}_{\mathrm{xx}}=0.9971 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}=0.8890 \mathrm{in}^{4}$
$\mathrm{S}_{\mathrm{xx}}=0.8388 \mathrm{in}^{3} ; \mathrm{Z}_{\mathrm{xx}}=0.9996 \mathrm{in}^{3}$
$S_{y y}=0.7482 \mathrm{in}^{3} ; \mathrm{Z}_{\mathrm{yy}}=0.9011 \mathrm{in}^{3}$
$\mathrm{r}_{\mathrm{xx}}=0.9319$ in
$\mathrm{r}_{\mathrm{yy}}=0.8799$ in
$\mathrm{J}=1.341$ in
$\mathrm{k} \leq 1$ for all applications
Based on 2015 ADM Chapter F


## Lateral torsional buckling:

Lateral torsional buckling may occur on posts that are unrestricted in rotation at the free end. However, typical installations involve a top rail that will restrict the post from rotating and prevent lateral torsional buckling. Testing of the ARS system has never resulted in a lateral torsional buckling failure.
$\mathrm{C}_{\mathrm{b}}=1.3$ for cantilevered beam with concentrated load at free end (ADM 15 F.4.1)
$\lambda=2.3\left(\mathrm{~L}_{\mathrm{B}} \mathrm{S}_{\mathrm{C}} /\left(\mathrm{C}_{\mathrm{b}}\left(\mathrm{I}_{\mathrm{y}} \mathrm{J}\right)^{1 / 2}\right)^{1 / 2}=2.3\left(\mathrm{~L}_{b} * .8388 /\left(1.3 *(.889 * 1.341)^{1 / 2}\right)\right)^{1 / 2}=1.768 \mathrm{~L}_{\mathrm{B}}{ }^{1 / 2}\right.$
Inelastic buckling controls when $\lambda<\mathrm{C}_{\mathrm{c}}=65.7$
$65.7=1.768 \mathrm{LB}^{1 / 2}$
$\mathrm{L}_{b}=1,381 ">48^{\prime \prime}$ (Much higher than practical post heights)
For $L_{b}=42$ "
$\lambda=1.768^{*} 42^{\prime \prime}{ }^{1 / 2}=11.46$
$\mathrm{M}_{\mathrm{nmb}}=\mathrm{M}_{\mathrm{p}}\left(1-\lambda / \mathrm{C}_{\mathrm{c}}\right)+\pi^{2} \mathrm{E} \lambda \mathrm{S}_{\mathrm{xc}} / \mathrm{C}_{\mathrm{c}}{ }^{3}$
$\mathrm{M}_{\mathrm{p}}=35 \mathrm{ksi}^{*} .9996 \mathrm{in}^{3}=34,986$ "\#
$\mathrm{M}_{\mathrm{nmb}}=34,986(1-11.46 / 65.7)+\pi^{2 *} 10^{*} 10^{6 *} 11.46^{*} .8388 / 65.7^{3}=32,229$ "\#
$\mathrm{M}_{\mathrm{nmb}}=32,229 " \# / 1.65=19,533 " \#$
Above lateral torsional buckling strengths only apply to posts installed without a top rail or some other member to restrict the top of the post against torsion.

## Yielding/Rupture/Local Buckling:

$\mathrm{b} / \mathrm{t}=1.95 / 0.1=19.5<20.8$
$\mathrm{F}_{\mathrm{c}} / \Omega=21.2 \mathrm{ksi}$
$\mathrm{Z}<1.5 \mathrm{~S}$
$\mathrm{M}_{\mathrm{np}} / \Omega=\mathrm{ZF}_{\mathrm{y}} / \Omega=0.9996 \mathrm{in}^{3 *} 21.2 \mathrm{ksi}=21,192^{\text {\#" }}$ or
$\mathrm{M}_{\mathrm{nu}} / 1.95=\mathrm{ZF}_{\mathrm{u}}=0.9996 \mathrm{in}^{3} * 38 \mathrm{ksi} / 1.95=19,479 " \#$ (Controls)

## Bending strength of post installed with top rail:

$\mathrm{M}_{\mathrm{a}}=19,500$ "\#
Strong axis deflections:
$\Delta=\mathrm{PL}^{3} /(3 \mathrm{EI})=\mathrm{PL}^{3} /\left(3^{*} 10,100,000 \mathrm{psi}^{*} 0.9971 \mathrm{in}^{4}\right)=\mathrm{PL}^{3} / 30,212,130$
$\mathrm{P}_{1}$ " $=30,212,130 / \mathrm{L}^{3}$ for $42 "$ post height $=408 \#$
$\mathrm{L}_{1}$ " $=(30,212,130 / \mathrm{P})^{1 / 3}$ for $250 \# \mathrm{~L}=495 / 16$ "
For L/12 (maximum allowable post deflection from ASTM E-985 test loads)
$\mathrm{P}=\mathrm{EI} /\left(4 \mathrm{~L}^{2}\right)$ : for 42 " height:
$\mathrm{P}=10,100,000 \mathrm{psi} * 0.9971 \mathrm{in}^{4} /\left(4 * 42^{2}\right)=1,427 \#-$ Deflection will not control post loads
Deflection for 200\# load for 42" post height:
$\Delta=\mathrm{PL}^{3} /(3 \mathrm{EI})=200^{*} 42^{3} /\left(3 * 10,100,000 \mathrm{psi}^{*} 0.9971 \mathrm{in}^{4}\right)=0.49$ "
For posts directly fascia mounted with $3 / 8$ " $(7 / 16$ " dia holes) bolts through post:
Reduced strength at bolt hole:
Bending perpendicular to bolts
$\mathrm{S}_{\text {red }}=0.6026 \mathrm{in}^{3}$
$\mathrm{F}_{\mathrm{tb}}=21 \mathrm{ksi}$ at reduced section
$\mathrm{M}_{\mathrm{red}}=21 \mathrm{ksi} * 0.6026 \mathrm{in}^{3}=12,655^{\prime \prime} \#$

For bending parallel to bolts:
$\mathrm{S}_{\mathrm{red}}=0.564 \mathrm{in}^{3}, \mathrm{~A}_{\mathrm{f}}=0.125^{*} 1.875^{2}=0.439 \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{tb}}=21 \mathrm{ksi}$ at reduced section
$\mathrm{M}_{\mathrm{red}}=21 \mathrm{ksi} * 0.564 \mathrm{in}^{3}=11,844 " \#$
To allow for shear stress from bolt bearing on post limit moment so that:
$\mathrm{M} / 11,844+\left[\left(\mathrm{T}_{\text {bolt }} / 0.439\right) / 12000\right]^{2} \leq 1.0$
For example if bolt tension $=2,000 \#$ the maximum allowable moment is:
$\mathrm{M}_{\mathrm{a}}=\left\{1.0-[(2000 / 0.439) / 12000]^{2}\right\}^{*} 11,844=10,137$ " $\#$

## Post $45^{\circ}$ Corner

6061-T6

Post Section Properties
-Area 1.261"
$\mathrm{I}_{\mathrm{xx}}=1.120 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}=1.742 \mathrm{in}^{4}$
$\mathrm{S}_{\mathrm{xx}}=0.812 \mathrm{in}^{3}$
$S_{y y}=0.900 \mathrm{in}^{3}$
$\mathrm{Z}_{\mathrm{xx}}=1.127 \mathrm{in}^{3}$
$\mathrm{Z}_{\mathrm{yy}}=1.340 \mathrm{in}^{3}$
$\mathrm{r}_{\mathrm{xx}}=0.975 \mathrm{in}$
$\mathrm{r}_{\mathrm{yy}}=1.175 \mathrm{in}$
$\mathrm{J}=1.947$ in
$\mathrm{k}=1$ for all applications


Allowable bending stress
ADM Table 2-21
Lateral torsional buckling will not be a concern for corner posts because they will be braced in multiple directions.

## Yielding/Rupture/Local Buckling:

For bending about X -axis
$\mathrm{b} / \mathrm{t}=1.75 / 0.09=19.4<20.8$
$\mathrm{F}_{\mathrm{c}} / \Omega=21.2 \mathrm{ksi}$
$\mathrm{Z}<1.5 \mathrm{~S}$
$\mathrm{M}_{\mathrm{np}} / \Omega=\mathrm{ZF}_{\mathrm{y}} / \Omega=1.127 \mathrm{in}^{3}{ }^{3} 21.2 \mathrm{ksi}=23,892^{\# \prime \prime}$ or
$\mathrm{M}_{\mathrm{nu}} / 1.95=\mathrm{ZF}_{\mathrm{u}}=1.127 \mathrm{in}^{3 *} 38 \mathrm{ksi} / 1.95=21,962 " \#$ (Controls)
For bending about Y -axis
$\mathrm{b} / \mathrm{t}=1.812 / 0.09=20.1<20.8$
$\mathrm{F}_{\mathrm{C}} / \Omega=21.2 \mathrm{ksi}$
$\mathrm{Z}<1.5 \mathrm{~S}$
$\mathrm{M}_{\mathrm{np}} / \Omega=\mathrm{ZF}_{\mathrm{y}} / \Omega=1.340 \mathrm{in}^{3}{ }^{*} 21.2 \mathrm{ksi}=28,408^{\# \prime \prime}$ or
$\mathrm{M}_{\mathrm{nu}} / 1.95=\mathrm{ZF}_{\mathrm{u}}=1.340 \mathrm{in}^{3 *} 38 \mathrm{ksi} / 1.95=26,113$ " $\#$ (Controls)
Connection to base plate
Post uses standard base plate
Post anchorage methods and strengths are the same as for the square post.
For angles other than $135^{\circ}$ Use the Adjustable Fastening Plates for Top Rails on either the square or $135^{\circ}$ posts as needed to achieve the desired angle.

## Connection to base plate

Failure modes $\rightarrow$ screw tension
$\rightarrow$ screw shear
$\rightarrow$ screw withdrawal
For screw withdrawal
See ADM 5.4
From testing screw engagement in slot is adequate so that failure is consistently screw rupture without withdrawal from the slot.

Base plate to post screws are AISI 4037 steel alloy fabricated in accordance with SAE J429 Grade 8 and coated with Magni 550 corrosion protection. Refer to base plate attachment strength test report for determination of allowable screw tension
 strength and allowable moment on the connection.
Average failure moment = 22,226" $\#$
Safety factor calculated in accordance with ADM 9.3.2 $=2.07$
Allowable Moment on the base plate to post connection:
$\mathrm{M}_{\text {allowable }}=22,226^{\prime \prime} \# / 2.07=10,895$ " $\#$
Allowable screw tension load:
$\mathrm{T}_{\text {all }}=10,895^{\prime \#} \# /(2 * 2.28 ")=2,389 \#$ From testing
Calculated strength:
Screw tension $\rightarrow \mathrm{F}_{\mathrm{tU}}=0.0376 \bullet 150 \mathrm{ksi}=5,640^{\#}$ Screw rupture on net tension area
For fracture $\mathrm{SF}=1.6 /(0.9 * 0.75)=2.37 \rightarrow 5,640 / 2.37=2,380^{\#}$

Using the calculated screw strength
$\mathrm{M}_{\mathrm{all}}=2 \cdot 2,380^{\#} \cdot 2.28^{\prime \prime}=10,852^{\prime \#}$

Base plate bending stress

$$
\mathrm{F}_{\mathrm{t}}=24 \mathrm{ksi} \rightarrow \mathrm{~S}_{\min }=\frac{5 " \bullet 3 / 8^{2}}{6}=0.117 \mathrm{in}^{3}
$$

Base plate allowable moment

$$
\mathrm{M}_{\mathrm{all}}=24 \mathrm{ksi} \bullet 0.117 \mathrm{in}^{3}=2,812 \text { "\# }
$$

$\rightarrow$ Base plate bending stress
$\mathrm{T}_{\mathrm{B}}=\mathrm{C}$
$\mathrm{M}=0.8125^{\prime \prime} \cdot \mathrm{T}_{\mathrm{B}} \cdot 2$
$\mathrm{T}_{\text {all }}=\frac{2,812}{2 \cdot 0.8125}=1,730^{\#}$
Maximum post moment for base plate strength
$\mathrm{M}_{\text {all }}=2 \cdot 1,730 \cdot 4.375^{\prime \prime}=15,142^{\text {\#" }}$
Limiting factor $=$ screws to post
$\mathrm{M}_{\text {ult }}=2 \cdot 5,314^{\#} \cdot 2.28^{\prime \prime}=24,232^{\# \prime}$
$\mathrm{M}_{\text {all }}=2 \cdot 2,293^{\#} \cdot 2.28^{\prime \prime}=10,500^{\prime \prime}$


Refer to Guard Rail Post To Base Plate Screw Connection Strength report dated 11/22/2010 by this engineer for testing results. Testing has confirmed that screws fail in tension and not pullout from the screw slot, 2015 ADM J5.4.1.2 is not applicable based on testing.

BASE PLATE ANCHORAGE
$\mathrm{T}_{\text {Des }}=\frac{10,500}{2 \cdot 4.375^{\prime \prime}}=1,195^{*}$
adjustment for concrete bearing pressure:
$\mathrm{a}=2 * 1,195 /\left(2 * 3000 \mathrm{psi}^{*} 4.75 "\right)=0.087$ "
$\mathrm{T}^{\prime}$ Des $=\frac{10,500}{2 \cdot(4.375 "-0.087 / 2)}=$

For 200\# top load and 42 " post ht
$\mathrm{T}_{200}=\frac{8,400}{2 * 4.375^{\prime \prime}}=960 \#$
For 42" post height the maximum live load at the top of the post is:
$P_{\text {max }}=10,500^{\prime "} / 42 "=250^{\#}$
For 50 plf live load maximum post spacing is:
$\mathrm{S}_{\text {max }}=250^{\# / 50} \mathrm{plf}=5^{\prime}=5^{\prime} 0^{\prime \prime}$

## LOAD TESTS:

Connection strength from load testing post/base plate assemblies:
42 " from top of base plate to centerline of load.
$\mathrm{M}_{\text {fail }}=\left(524.2 \# * 42^{\prime \prime}\right)=22,226^{\prime \prime} \#$
Based on 7 load tests performed by Edward C. Robison, P.E.
Load tests - minimum failure load at 42 " post height $=$
$524.2 \#$, failure range $=515 \#$ to $540 \#$ (variation under 5\%).
The failure load based on the load tests is $8.8 \%$ below the load predicted by the calculations for screw rupture (observed failure mode) because of the prying action which occurs from the base plate bending as the load increases to failure.

From ADM 9.3.2 Tests for Determining Structural Performance:


$$
\mathrm{SF}=\frac{(1.05 \alpha+1)}{\mathrm{M}_{\mathrm{M}} \mathrm{~F}_{\mathrm{M}}(\alpha+1)} \quad\left\{-\beta_{\mathrm{o}} \sqrt{ }\left[\mathrm{~V}_{\mathrm{M}^{2}}+\mathrm{V}_{\mathrm{F}^{2}}+\mathrm{C}_{\mathrm{P}} \mathrm{~V}_{\left.\left.\mathrm{P}^{2}+\mathrm{V}_{\mathrm{Q}}{ }^{2}\right]\right\}}\right.\right.
$$

Where: $\mathrm{M}_{\mathrm{M}}=1.10, \mathrm{~F}_{\mathrm{M}}=1.00, \mathrm{~V}_{\mathrm{M}}=0.06, \mathrm{~V}_{\mathrm{Q}}=0.21, \beta_{\mathrm{o}}=3.5, \mathrm{~V}_{\mathrm{F}}=0.05, \mathrm{~V}_{\mathrm{P}}=0.0192$
$\mathrm{MM}=1.10$ selected because strength is controlled by steel screw not aluminum failure.
$\mathrm{C}_{\mathrm{P}}=\left(\mathrm{n}^{2}-1\right) /\left(\mathrm{n}^{2}-3 \mathrm{n}\right)=\left(7^{2}-1\right) /\left(7^{2}-3 * 7\right)=1.71 ; \alpha=0.2$
$\mathrm{SF}=(1.05 * 0.2+1) /\left[1 * 1.1 *(0.2+1) * \mathrm{e}\left\{3.5 \sqrt{ }\left[0.06^{2}+0.05^{2}+1.71 * 0.0146^{2}+0.21^{2}\right]=2.07\right.\right.$
From test strengths
$\mathrm{M}_{\text {allowable }}=22,226 " \# / 2.07=10,895$ "\#
$\begin{array}{llll}\text { Test } & \text { Max. Load } & \text { Failure Mode } & \text { Comments } \\ \# 1 & 516 \# & \text { Screw fracture } & \text { Powers® Double Acting Anchors with } 3 / 8 \text { " bolts }\end{array}$ On test the anchors were slipping at 400 \# load allowing the base plate deflection to increase significantly and increasing the prying forces on the screws reducing the ultimate load.

Tests 1- 5: Red Head Tru-Bolt wedge anchors, $3 / 8 " \times 3-3 / 4 "$ with $2-5 / 8 "$ minimum embedment.

| $\# 2$ | $523 \#$ | Screw fracture | 1 anchor slipped at $400 \#$ |
| :--- | :--- | :--- | :--- |
| $\# 3$ | $515 \#$ | Screw fracture | 1 anchor slipped at $401 \#$ |
| $\# 4$ | $520 \#$ | Screw fracture | 1 anchor slipped at $383 \#$ |
| $\# 5$ | $532 \#$ | Screw fracture | 1 anchor slipped at $320 \#$ |
| $\# 6$ | $524 \#$ | Screw fracture | $3 / 8^{\prime \prime}$ bolt to steel beam |
| $\# 7$ | $540 \#$ | Screw fracture | $3 / 8 "$ bolt to steel beam |

Average failure load at screw fracture $=529.2 \#$
Coefficient of variation $=0.0146$

## RAISED BASEPLATE DESIGN AND ANCHORAGE -

Baseplates are raised up and bear on nuts installed on epoxy anchored threaded rod.
Guard rail Height: 42"
loading: 200\# concentrated load or 50 plf uniform load on top rail
or
25 psf distributed load on area
or
$25 \mathrm{psf}=80 \mathrm{mph} \exp \mathrm{C}$ wind
load:
Design moment on posts:
$\mathrm{M}_{1}=42$ "*200\# $=8,400 " \#$
$\mathrm{M}_{\mathrm{l}}=42$ "*50plf*5ft $=10,500 " \#$
$\mathrm{M}_{\mathrm{w}}=3.5^{\prime} * 5^{\prime} * 25 \mathrm{psf} * 42 " / 2=9,188^{\prime \prime} \#$
Design anchorage for $10,500 " \#$ moment.
Design shear $=438 \#($ wind $)$
Bolt tension for typical design
$\mathrm{T}=10,500 /(2 * 3.75)=1,400 \#$


Anchor to concrete:
$3 / 8 " \times 5$ " all-thread embedment depth $=3.5 "$ and 4,000 psi concrete strength.
Hilti HIT-RE 500SD per ESR-2322, Simpson Set-XP per ESR-2508 or other adhesive capable of developing the required strength.
$\mathrm{T}=2,700 \#$ Adjustment for anchor spacing $=3.75^{\prime \prime}$
$\mathrm{C}_{\mathrm{s}} @ 3.75 "=1-0.20[(5.625-3.75) / 4.5]=0.917$
Adjustment for edge distance $=2-1 / 8$ "
$\mathrm{C}_{\mathrm{e}}=1-0.30[(3.375-2.125) / 2.25]=0.833$
$\mathrm{T}^{\prime}=2,700 \# * 0.917 * 0.833=2,062 \#$
Check base plate strength: Bending is biaxial because it sits on bearing nuts:
$\mathrm{M}=(3.75 "-2.28 ") / 2^{*} 1,400 \# * 2 * \sqrt{2}=2,910 " \#$
Bending stress in plate
The effective width at the post screws: 3.86 "
$\mathrm{S}=2 * 3.86{ }^{\prime} * 0.375^{2} / 6=0.181 \mathrm{in}^{3}$
$\mathrm{f}_{\mathrm{b}}=2,910 / 0.181=16,080 \mathrm{psi}$

Allowable $=19 \mathrm{ksi}$
Bearing on nut:
Area $=\left(0.8^{2}-0.5625^{2}\right) \pi=1.0 \mathrm{in}^{2}$
$\mathrm{f}_{\mathrm{B}}=1,400 \# / 1.0=1,400 \mathrm{psi}-$ Okay
Screws to post - okay based on standard base plate design
Posts okay based on standard post design
OFFSET BASE PLATE
Offset base plate will have same allowable loads as the standard base plate. Anchors to concrete are same as for standard base plate.

## BASEPLATE MOUNTED TO WOOD - SINGLE FAMILY RESIDENCE

For 200\# top load and 36 " post height:
$\mathrm{M}=200 \# * 36 "=7,200 " \#$
$\mathrm{T}_{200}=\underline{7,200}=823 \#$

$$
2 * 4.375 "
$$

Adjustment for wood bearing:
Bearing Area Factor:
$\mathrm{C}_{\mathrm{b}}=\left(5^{\prime \prime}+0.375\right) / 5^{\prime \prime}=1.075$
$\mathrm{a}=2 * 823 /\left(1.075 * 625 \mathrm{psi} * 5^{\prime \prime}\right)=0.49$ "
$\mathrm{T}=7,200 /[2 *(4.375-0.49 / 2)]=872 \#$
Required embed depth:


For protected installations the minimum embedment is:
$l_{\text {e }}=872 \# / 323 \# /$ in $=2.70^{\prime \prime}:+7 / 32 "$ for tip $=2.92^{\prime \prime}$
For weather exposed installations the minimum embedment is:
$l_{\mathrm{e}}=872 \# / 243 \# /$ in $=3.59 ":+7 / 32 "$ for tip $=3.81 "$
FOR WEATHER EXPOSED INSTALLATIONS USE 5" LAG SCREWS AND INCREASE BLOCKING TO 4.5" MINIMUM THICKNESS.

REFER TO GUARD POSTS MOUNTED TO WOOD DECKS RESIDENTIAL INSTALLATIONS 42" GUARD HEIGHT REPORT FOR OTHER DETAILS AND MOUNTING REQUIREMENTS FOR MOUNTING TO WOOD FRAMING. MAY BE USED FOR COMMERCIAL APPLICATIONS AT 4' POST SPACING.

BASE PLATE MOUNTED TO UNCRACKED CONCRETE - Expansion Bolt Alternative: Base plate mounted to concrete with ITW Red Head Trubolt wedge anchor 3/8"x3.75" concrete anchors with 3" effective embedment. Anchor strength based on ESR-2427
Minimum conditions used for the calculations:
$\mathrm{f}^{\prime}{ }_{\mathrm{c}} \geq 3,000 \mathrm{psi}$; edge distance $=2.25$ " spacing $=3.75$ "
$\mathrm{h}=3.0$ ": embed depth
For concrete breakout strength:
$\mathrm{N}_{\mathrm{cb}}=\left[\mathrm{A}_{\mathrm{Ncg}} / \mathrm{A}_{\mathrm{Nco}}\right] \varphi_{\mathrm{ed}, \mathrm{N}} \varphi_{\mathrm{c}, \mathrm{N}} \varphi_{\mathrm{cp}, \mathrm{N}} \mathrm{N}_{\mathrm{b}}$
$\mathrm{A}_{\mathrm{Ncg}}=(1.5 * 3 * 2+3.75) *(1.5 * 3+2.25)=86.06$ in $^{2} 2$ anchors
$\mathrm{A}_{\mathrm{Nco}}=9 * 3^{2}=81 \mathrm{in}^{2}$
$\mathrm{C}_{\mathrm{a}, \mathrm{cmin}}=1.5$ " (ESR-2427 Table 3)
$\mathrm{C}_{\mathrm{ac}}=5.25 "($ ESR-2427 Table 3)

$\varphi_{\text {ed }, \mathrm{N}}=1.0$
$\varphi_{\mathrm{c}, \mathrm{N}}=$ (use 1.0 in calculations with $\mathrm{k}=24$ )
$\varphi_{\mathrm{cp}, \mathrm{N}}=\max (1.5 / 5.25$ or $1.5 * 3 " / 5.25)=0.857\left(\mathrm{c}_{\mathrm{a}, \min } \leq \mathrm{c}_{\mathrm{ac}}\right)$
$\mathrm{N}_{\mathrm{b}}=24 * 1.0 * \sqrt{ } 3000 * 3.0^{1.5}=6,830 \#$
$\mathrm{N}_{\mathrm{cb}}=86.06 / 81 * 1.0 * 1.0 * 0.857 * 6,830=6,219 \leq 2 * 4,200$
based on concrete breakout strength.
Determine allowable tension load on anchor pair
$\mathrm{T}_{\mathrm{s}}=0.65^{*} 6,219 \# / 1.6=2,526 \#$
Check shear strength - Concrete breakout strength in shear:
$\mathrm{V}_{\mathrm{cb}}=\mathrm{A}_{\mathrm{vc}} / \mathrm{A}_{\mathrm{vco}}\left(\varphi_{\mathrm{ed}, \mathrm{V}} \varphi_{\mathrm{c}, \mathrm{V}} \varphi_{\mathrm{h}, \mathrm{V}} \mathrm{V}_{\mathrm{b}}\right.$
$\mathrm{A}_{\mathrm{vc}}=(1.5 * 3 * 2+3.75) *(2.25 * 1.5)=43.03$
$\mathrm{A}_{\mathrm{vco}}=4.5\left(\mathrm{c}_{\mathrm{a} 1}\right)^{2}=4.5(3)^{2}=40.5$
$\varphi_{\mathrm{ed}, \mathrm{v}}=1.0$ (affected by only one edge)
$\varphi_{\mathrm{c}, \mathrm{v}}=1.4$ uncracked concrete
$\varphi_{\mathrm{h}, \mathrm{V}}=\sqrt{ }\left(1.5 \mathrm{c}_{\mathrm{a} 1} / \mathrm{h}_{\mathrm{a}}\right)=\sqrt{ }(1.5 * 3 / 3)=1.225$
$\mathrm{V}_{\mathrm{b}}=\left[7\left(\mathrm{l}_{\mathrm{e}} / \mathrm{d}_{\mathrm{a}}\right)^{0.2} \mathrm{~d}_{\mathrm{a}}\right] \lambda \sqrt{ } \mathrm{f}^{\prime}{ }_{\mathrm{c}}\left(\mathrm{c}_{\mathrm{a} 1}\right)^{1.5}=\left[7(1.625 / 0.375)^{0.2} \sqrt{ } 0.375\right] 1.0 \sqrt{ } 3000(3.0)^{1.5}=1,636 \#$
$\mathrm{V}_{\mathrm{cb}}=43.03 / 40.5 * 1.0 * 1.4 * 1.225^{*} 1,636 \#=2,981 \#$
Steel shear strength $=1,830 \# * 2=3,660$
Allowable shear strength
$\emptyset \mathrm{V}_{\mathrm{N}} / 1.6=0.70 * 2,981 \# / 1.6=1,304 \#$
Shear load $=250 / 1,304=0.19 \leq 0.2$
Therefore interaction of shear and tension will not reduce allowable tension load:
$\mathrm{M}_{\mathrm{a}}=2,526 \# * 4.375 "=11,053 " \#>10,500 " \#$

## DEVELOPS FULL BASEPLATE MOUNTING STRENGTH.

ALLOWABLE SUBSTITUTIONS: Use same size anchor and embedment
Hilti Kwik Bolt TZ in accordance with ESR-1917
Powers Power Stud+ SD2 in accordance with ESR-2502
Powers Wedge-Bolt+ in accordance with ESR-2526
CONCRETE ANCHORS SHALL BE CHECKED FOR PROJECT CONDITIONS.

## CORE MOUNTED POSTS

Mounted in either 4"x4"x4" blockout, or 2-3/8" to 6" dia by 4" deep cored hole. Assumed concrete strength $2,500 \mathrm{psi}$ for existing concrete

Max load - 6'•50 plf $=300$ \#
$\mathrm{M}=300 \# \bullet 42^{\prime \prime}=12,600 " \#$

Check grout reactions
From $\Sigma \mathrm{M}_{\mathrm{PL}}=0$

$\mathrm{P}_{\mathrm{U}}=\frac{12,600 " \#+300 \# \cdot 3.33 "}{2.67 "}=5,093 \#$
$\mathrm{f}_{\text {Bmax }}=\frac{5,093 \# \cdot 2 \cdot 1 / 0.85}{2 " \cdot 2.375 "}=2,523$ psi post to grout
$\mathrm{f}_{\text {Bconc }}=2,523 \cdot 2 " / 4 "=1,262$ psi grout to concrete
Core mount okay for 6' post spacing
MINIMUM EDGE DISTANCE:
When \#4 or larger rebar is installed along slab edge between the
 post and slab edge the minimum edge distance from edge of hole to slab edge is $1-1 / 4$ ".

When no rebar is present required edge distance:
Assume that embed is only near one edge and that slab thickness is greater than $1.5 \mathrm{C}_{\mathrm{a} 1}$

Design as 2-way shear:
Three sided breakout surface
Length of perpendicular break $=2.375 "+3 * \mathrm{C}_{\mathrm{a} 1}$
Length of parallel breaks $=2 "+1.5 \mathrm{C}_{\mathrm{a} 1}$

$\mathrm{b}_{\mathrm{o}}=2.375 "+3 * \mathrm{C}_{\mathrm{a} 1}+2 *\left(2 "+1.5 \mathrm{C}_{\mathrm{a} 1}\right)$
$\boldsymbol{\beta}=\left(2.375 "+3 * \mathrm{C}_{\mathrm{a} 1}\right) /\left(2 "+1.5 \mathrm{C}_{\mathrm{a} 1}\right)$
$\mathrm{V}_{\mathrm{n}, \min }=\mathrm{V}^{*} \mathrm{LF} / \varnothing=5093 \# * 1.6 / 0.75=10,865 \#$

| $\lambda$ | f'c | $\beta$ | as | d | bo |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 3000 | 1.70922661 | 30 | 2.3923629 | 20.7291774 |


| ACI Table 22.6.5.2 |  | vc |
| :--- | :--- | ---: |
|  |  |  |
| Least of: | $4 \lambda v f^{\prime} c$ | 219.089023 |
|  | $(2+4 / \beta) \lambda v f^{\prime} c$ | 237.72472 |
|  | $\left(2+\alpha_{5} \mathrm{~d} / \mathrm{b}_{0}\right) \lambda v \mathrm{f}^{\prime} \mathrm{c}$ | 299.183169 |
|  | $v_{c} \mathrm{~d} b_{o}$ | 10865.0004 |

$\mathrm{C}_{\mathrm{a}, \min }=2.39$ " measured from the face of the post $=2.39 "+2.375 " / 2=3.58 "$ measured from the center of the post

## SIX SCREW POST - 2-3/8" Square

Post Strength
6005-T5 or 6061-T6
-Area 1.1482"
$\mathrm{I}_{\mathrm{xx}}=0.9971 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}=0.8890 \mathrm{in}^{4}$
$\mathrm{S}_{\mathrm{xx}}=0.8388 \mathrm{in}^{3} ; \mathrm{Z}_{\mathrm{xx}}=0.9996 \mathrm{in}^{3}$
$S_{y y}=0.7482 \mathrm{in}^{3} ; Z_{y y}=0.9011 \mathrm{in}^{3}$
$\mathrm{r}_{\mathrm{xx}}=0.9319$ in
$\mathrm{r}_{\mathrm{yy}}=0.8799$ in
$\mathrm{J}=1.341 \mathrm{in}$

$\mathrm{k} \leq 1$ for all applications
Based on 2015 ADM Chapter F

## Lateral torsional buckling:

Lateral torsional buckling may occur on posts that are unrestricted in rotation at the free end. However, typical installations involve a top rail that will restrict the post from rotating and prevent lateral torsional buckling. Testing of the ARS system has never resulted in a lateral torsional buckling failure.
$\mathrm{C}_{\mathrm{b}}=1.3$ for cantilevered beam with concentrated load at free end (ADM 15 F.4.1)
$\lambda=2.3\left(\mathrm{~L}_{\mathrm{B}} \mathrm{S}_{\mathrm{C}} /\left(\mathrm{C}_{\mathrm{b}}\left(\mathrm{I}_{\mathrm{y}} \mathrm{J}\right)^{1 / 2}\right)^{1 / 2}=2.3\left(\mathrm{~L}_{b} * .8388 /\left(1.3 *(.889 * 1.341)^{1 / 2}\right)\right)^{1 / 2}=1.768 \mathrm{~L}_{\mathrm{B}}{ }^{1 / 2}\right.$
Inelastic buckling controls when $\lambda<\mathrm{C}_{\mathrm{c}}=65.7$
$65.7=1.768 \mathrm{~L}_{\mathrm{B}}{ }^{1 / 2}$
$\mathrm{L}_{b}=1,381 ">48^{\prime \prime}$ (Much higher than practical post heights)
For $\mathrm{L}_{\mathrm{b}}=42$ "
$\lambda=1.768^{*} 42^{\prime \prime} 1 / 2=11.46$
$\mathrm{M}_{\mathrm{nmb}}=\mathrm{M}_{\mathrm{p}}\left(1-\lambda / \mathrm{C}_{\mathrm{c}}\right)+\pi^{2} \mathrm{E} \lambda \mathrm{S}_{\mathrm{xc}} / \mathrm{C}_{\mathrm{c}}{ }^{3}$
$\mathrm{M}_{\mathrm{p}}=35 \mathrm{ksi}^{*} .9996 \mathrm{in}^{3}=34,986$ "\#
$\mathrm{M}_{\mathrm{nmb}}=34,986(1-11.46 / 65.7)+\pi^{2 *} 10^{*} 10^{6 *} 11.46^{*} .8388 / 65.7^{3}=32,229$ " $\#$
$\mathrm{M}_{\mathrm{nmb}}=32,229 " \# / 1.65=19,533 " \#$
Above lateral torsional buckling strengths only apply to posts installed without a top rail or some other member to restrict the top of the post against torsion.

## Yielding/Rupture/Local Buckling:

$\mathrm{b} / \mathrm{t}=1.95 / 0.1=19.5<20.8$
$\mathrm{F}_{\mathrm{c}} / \Omega=21.2 \mathrm{ksi}$
$\mathrm{Z}<1.5 \mathrm{~S}$
$\mathrm{M}_{\mathrm{np}} / \Omega=\mathrm{ZF}_{\mathrm{y}} / \Omega=0.9996 \mathrm{in}^{3 *} 21.2 \mathrm{ksi}=21,192^{\text {\#" }}$ or
$\mathrm{M}_{\mathrm{nu}} / 1.95=\mathrm{ZF}_{\mathrm{u}}=0.9996 \mathrm{in}^{3} * 38 \mathrm{ksi} / 1.95=19,479$ "\# (Controls)
Weak axis bending $=0.9011 \mathrm{in}^{3} * 38 \mathrm{ksi} / 1.95=17,560$ " $\#$ (Controls for weak axis bending)

## Bending strength of post installed with top rail:

$\mathrm{M}_{\mathrm{a}}=19,500$ " $\#$
Strong axis deflections:
$\Delta=\mathrm{PL}^{3} /(3 \mathrm{EI})=\mathrm{PL}^{3} /\left(3^{*} 10,100,000 \mathrm{psi}^{*} 0.9971 \mathrm{in}^{4}\right)=\mathrm{PL}^{3} / 30,212,130$
$\mathrm{P}_{1}$ " $=30,212,130 / \mathrm{L}^{3}$ for $42^{"}$ post height $=408 \#$
$\mathrm{L}_{1} "=(30,212,130 / \mathrm{P})^{1 / 3}$ for $250 \# \mathrm{~L}=495 / 16$ "
For L/12 (maximum allowable post deflection from ASTM E-985 test loads)
$\mathrm{P}=\mathrm{EI} /\left(4 \mathrm{~L}^{2}\right)$ : for 42 " height:
$\mathrm{P}=10,100,000 \mathrm{psi} * 0.9971 \mathrm{in}^{4} /\left(4 * 42^{2}\right)=1,427 \#-$ Deflection will not control post loads
Deflection for 200\# load for 42" post height:
$\Delta=\mathrm{PL}^{3} /(3 \mathrm{EI})=200^{*} 42^{3} /\left(3^{*} 10,100,000 \mathrm{psi}^{*} 0.9971 \mathrm{in}^{4}\right)=0.49 "$
For posts directly fascia mounted with $3 / \mathbf{8}^{\prime \prime}(7 / 16 "$ dia holes) bolts through post:
Reduced strength at bolt hole:
Bending perpendicular to bolts
$\mathrm{S}_{\mathrm{red}}=0.6026 \mathrm{in}^{3}$
$\mathrm{F}_{\mathrm{tb}}=21 \mathrm{ksi}$ at reduced section
$\mathrm{M}_{\mathrm{red}}=21 \mathrm{ksi} * 0.6026 \mathrm{in}^{3}=12,655^{\prime \prime} \#$
For bending parallel to bolts:
$\mathrm{S}_{\mathrm{red}}=0.564 \mathrm{in}^{3}, \mathrm{~A}_{\mathrm{f}}=0.125^{*} 1.875^{2}=0.439 \mathrm{in}^{2}$
$\mathrm{F}_{\mathrm{tb}}=21 \mathrm{ksi}$ at reduced section
$\mathrm{M}_{\mathrm{red}}=21 \mathrm{ksi} * 0.564 \mathrm{in}^{3}=11,844$ "\#
To allow for shear stress from bolt bearing on post limit moment so that:
$\mathrm{M} / 11,844+\left[\left(\mathrm{T}_{\text {bolt }} / 0.439\right) / 12000\right]^{2} \leq 1.0$
For example if bolt tension $=2,000 \#$ the maximum allowable moment is:
$\mathrm{M}_{\mathrm{a}}=\left\{1.0-[(2000 / 0.439) / 12000]^{2}\right\}^{*} 11,844=10,137 " \#$

## Heavy Post

6061-T6 Aluminum

Heavy posts are typically used for cable rail corner and end posts that receive high cable loading.
-Area 1.4927 in $^{2}$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{x}}=1.0757 \mathrm{in}^{4} \\
& \mathrm{I}_{\mathrm{yy}}=1.2643 \mathrm{in}^{4} \\
& \mathrm{~S}_{\mathrm{x}}=0.88888 \mathrm{in}^{3} \\
& \mathrm{~S}_{\mathrm{y}}=1.0062 \mathrm{in}^{3} \\
& \mathrm{Z}_{\mathrm{x}}=1.131 \mathrm{in}^{3} \\
& \mathrm{Z}_{\mathrm{y}}=1.347 \mathrm{in}^{3} \\
& \mathrm{~J}=2.34 \mathrm{in} \\
& \quad \mathrm{k} \leq 1 \quad \text { for all applications }
\end{aligned}
$$



Allowable bending stress ADM Table 2-19
For thick wall post, lateral torsional buckling and local buckling do not control.
Yielding/Rupture Strength
$\mathrm{F}_{\mathrm{y}} / \Omega=35 \mathrm{ksi} / 1.65=21.2 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{u}} / \Omega=38 \mathrm{ksi} / 1.95=19.5 \mathrm{ksi}$ (Controls)
$\mathrm{Mall}_{\mathrm{all}}(\mathrm{x})=\mathrm{ZF}_{\mathrm{tu}} / \mathrm{k}_{\mathrm{t}}=1.131 * 19.5 \mathrm{ksi} / 1=22,055$ " $\#$
$\mathrm{M}_{\mathrm{all}}(\mathrm{y})=\mathrm{ZF}_{\mathrm{tu}} / \mathrm{k}_{\mathrm{t}}=1.347 * 19.5 \mathrm{ksi} / 1=26,267$ " $\#$
$\Delta=\mathrm{PL}^{3} /(3 \mathrm{EI})=\mathrm{PL}^{3} /\left(3^{*} 10,100,000 \mathrm{psi}^{*} 1.0757 \mathrm{in}^{4}\right)=\mathrm{PL}^{3} / 32,593,710$
$\mathrm{P}_{1} "=32,593,710 / \mathrm{L}^{3}$ for $42 "$ post height $=440 \#$
$\mathrm{L}_{\mathrm{l}}$ " $=(32,593,710 / \mathrm{P})^{1 / 3}$ for $250 \# \mathrm{~L}=50.7$ "
For L/12 (maximum allowable post deflection from ASTM E-985 test loads)
$\mathrm{P}=\mathrm{EI} /\left(4 \mathrm{~L}^{2}\right)$ : for 42 " height:
$\mathrm{P}=10,100,000 \mathrm{psi}^{*} 1.0757 \mathrm{in}^{4} /\left(4 * 42^{2}\right)=1,540 \#-$ Deflection will not control post loads
Deflection for 200\# load for 42" post height:
$\Delta=\mathrm{PL}^{3} /(3 E \mathrm{I})=200 * 42^{3} /\left(3 * 10,100,000 \mathrm{psi}^{*} 1.0757 \mathrm{in}^{4}\right)=0.45 "$

## SIX SCREW CONNECTION TO BASE PLATE

Screws are the same as for the standard 4 screw connection.

Screw embedment length into the screw slots is adequate to develop the full screw tension strength.

Use same screw tension strength as used for the four screw connection:
$\mathrm{T}_{\mathrm{a}}=2,293 \#$ per screw
$\mathrm{V}_{\mathrm{a}}=917 \#$ per screw
$V_{\text {des }}=6 * 917=5,502 \#$
limiting shear load on post so that screw shear stress doesn't reduce the allowable tension:


$$
V_{0.2}=0.2 * 5,502 \#=1,100 \#
$$

Base plate thickness and strength same as for standard post.

## Allowable moment on the posts based on screw tension strength:

Strong axis bending -
$\mathrm{M}_{\text {base }}=3$ screws*2,293\#*2.28" $=15,684 " \#<19,479 " \#$
Doesn't develop full post strength.
Weak axis bending -
$M_{\text {base }}=2$ screws*2,293\#*2.28" +2 screws*0.5*2,293\#*2.28" $/ 2=13,070 " \# \leq 17,560 " \# " \#$ 6 screw connection won't develop the full post strength for weak axis bending.

LIMITING POST MOMENTS FOR SIX SCREW CONNECTION:
STRONG AXIS BENDING $M_{A}=15,684 " \#=1,307$ '\#
WEAK AXIS BENDING $M_{\mathrm{A}}=13,070 ` \#=1,089{ }^{\prime} \#$

FASCIA BRACKET
Allowable stresses
ADM Table 2-24 6063-T6 Aluminum
$\mathrm{Ft}=15 \mathrm{ksi}$, uniform tension
$\mathrm{Ft}=20 \mathrm{ksi}$, flat element bending
$\mathrm{F}_{\mathrm{B}}=31 \mathrm{ksi}$
$\mathrm{Fc}=20 \mathrm{ksi}$, flat element bending

Section Properties
Area: 2.78 sq in
Perim: 28.99 in
$\mathrm{I}_{\mathrm{xx}}: 3.913 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 5.453 \mathrm{in}^{4}$
$\mathrm{C}_{\mathrm{xx}}: 1.975 \mathrm{in} / 1.353$ in
$\mathrm{C}_{\mathrm{yy}}: 2.954$ in
$\mathrm{S}_{\mathrm{xx}}: 1.981$ in $^{3}$ front
$S_{x x}: 2.892$ in $^{3}$
Syy: 1.846 in $^{3}$


EDWARD C. ROBISON, PE
10012 Creviston Dr NW
Gig Harbor, WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com

Allowable moment on bracket:

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{a}}=\mathrm{F}_{\mathrm{t}} * \mathrm{~S} \\
& \mathrm{M}_{\mathrm{axx}}=15 \mathrm{ksi}^{*} 1.981 \mathrm{in}^{3}=
\end{aligned}
$$

29,175"\# - Outward moment $\mathrm{M}_{\text {ayy }}=15 \mathrm{ksi}^{*} 1.846 \mathrm{in}^{3}=$
27,690"\# - Sidewise moment
Flange bending strength
Determine maximum allowable bolt load:

Tributary flange
$b_{f}=8 t=8 * 0.1875=1.5 "$ each side of hole
$\mathrm{b}_{\mathrm{t}}=1.5 "+1 "+0.5 "+1.75 "=4.75 "$
$\mathrm{S}=4.75{ }^{\prime} * 0.1875^{2} / 6=0.0278 \mathrm{in}^{3}$
$\mathrm{M}_{\mathrm{af}}=0.0278 \mathrm{in}^{3 *} 20 \mathrm{ksi}=557{ }^{\prime}$ "
Allowable bolt tension
$\mathrm{T}=\mathrm{M}_{\mathrm{af}} / 0.375=1,485 \#$
$3 / 8$ " bolt standard washer


For Heavy washer
$\mathrm{T}=\mathrm{M}_{\mathrm{a}} / 0.1875=2,971 \#$
Typical Installation $\boldsymbol{-}$ Post load $=250$ \# at 42" AFF $\mathbf{-}$ Top hole is 3" below finish floor
$\mathrm{T}_{\text {up }}=\left[250 \# *\left(42^{\prime \prime}+7 "\right) / 5^{\prime \prime}\right] / 2$ bolts $=1,225 \#$ tension
$\mathrm{T}_{\text {bot }}=\left[250 \#\left(42^{\prime \prime}+3^{\prime \prime}\right) / 5^{\prime \prime}\right] / 2$ bolts $=1,125 \#$ tension
For centerline holes:
$\mathrm{T}=\left[250 \# *\left(42^{\prime \prime}+5^{\prime}\right) / 3^{\prime \prime}\right] / 2$ bolts $=1,958 \#$ tension
For lag screws into beam face:

- 3/8" lag screw - withdrawal strength per 2015 NDS Table 12.2A

Wood species $-\mathrm{G} \geq 0.43-\mathrm{W}=243 \# /$ in
Adjustments $-\mathrm{Cd}=1.33, \mathrm{Cm}=0.75$ (where weather exposed)
No other adjustments required.
$\mathrm{W}^{\prime}=243 \# /$ in $^{*} 1.6=389 \# /$ in - where protected from weather
W' $=243 \# /$ in* $1.6 * 0.7=272 \# /$ in - where weather exposed
For protected installations the minimum embedment is:

$$
1_{\mathrm{e}}=1,225 \# / 389 \# / \text { in }=3.15^{\prime \prime}:+7 / 32 " \text { for tip }=3.37 "
$$

For weather exposed installations the minimum embedment is:
$l_{\mathrm{e}}=1,225 \# / 272 \# /$ in $=4.50 ":+7 / 32^{\prime \prime}$ for tip $=4.72$ " requires $5-1 / 2^{\prime \prime}$ screw
EDWARD C. ROBISON, PE
10012 Creviston Dr NW
Gig Harbor, WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com

Fascia Brackets- Single Family Residence installations to wood deck:


Typical Installation - Post load $=200$ \# at 36 " AFF - Top hole is 3 " below finish floor
$\mathrm{T}_{\text {up }}=\left[200 \# *\left(36^{\prime \prime}+7^{\prime \prime}\right) / 5^{\prime \prime}\right] / 2$ bolts $=860 \#$ tension
$\mathrm{T}_{\mathrm{bot}}=\left[200 \#(36 "+3 ") / 5^{\prime \prime}\right] / 2$ bolts $=780 \#$ tension
For protected installations the minimum embedment is:

$$
1_{e}=860 \# / 323 \# / \text { in }=2.66^{\prime \prime}:+7 / 32^{\prime \prime} \text { for tip }=2.88^{\prime \prime}
$$

For weather exposed installations the minimum embedment is:

$$
l_{\mathrm{e}}=860 \# / 243 \# / \text { in }=3.54 ":+7 / 32 " \text { for tip }=3.76 "
$$

$4 "$ lag screws are acceptable for installation with 36 " guard height on residential decks. Backing may be either built-up 2x lumber or solid beams.

Typical Installation - Post load = 200\# at 42" AFF - Top hole is 3 " below finish floor
$\mathrm{T}_{\text {up }}=\left[200 \# *\left(42^{\prime \prime}+7^{\prime \prime}\right) / 5^{\prime \prime}\right] / 2$ bolts $=980 \#$ tension
$\mathrm{T}_{\text {bot }}=[200 \#(42 "+3 ") / 5 "] / 2$ bolts $=900 \#$ tension
For protected installations the minimum embedment is:

$$
l_{\mathrm{e}}=980 \# / 323 \# / \text { in }=3.03 ":+7 / 32 " \text { for tip }=3.25 "
$$

For weather exposed installations the minimum embedment is:

$$
l_{\mathrm{e}}=980 \# / 243 \# / \text { in }=4.03 ":+7 / 32 " \text { for tip }=4.25 "
$$

$5 "$ lag screws are required for installation with 42 " guard height on residential decks. Backing may be either built-up 2 x lumber or solid beams.

## FASCIA MOUNTED POST

Commercial application - Load $=200 \#$ or 50 plf any direction on top rail


For 42 " rail height and $4^{\prime}$ on center post spacing:

$$
\mathrm{P}=200 \# \text { or } 50 \mathrm{plf} * 4=200 \#
$$

$\mathrm{M}_{\text {deck }}=42$ "*200plf $=8,400$ " $\#$
Load from glass infill lites:
Wind $=25 \mathrm{psf}$
$\mathrm{M}_{\text {deck }}=3.5^{\prime} * 25 \mathrm{psf} * 42 " / 2 * 4^{\prime}$ o.c. $=7,350$ " $\#$
$\mathrm{DL}=4^{\prime} *\left(3 \mathrm{psf} * 3^{\prime}+3.5 \mathrm{plf}\right)+10 \#=60 \#$ each post (vertical load)
Typical anchor to wood: $3 / 8$ " lag screw. Withdrawal strength of the lags from National Design Specification For Wood Construction (NDS) Table 11.2A.
For Doug-Fir Larch or equal, $\mathrm{G}=0.50$
$\mathrm{W}=305 \# /$ in of thread penetration.
$C_{D}=1.6$ for guardrail live loads or wind loads.
$\mathrm{C}_{\mathrm{m}}=1.0$ for weather protected supports (lags into wood not subjected to wetting).
$\mathrm{T}_{\mathrm{b}}=\mathrm{WC}_{\mathrm{D}} \mathrm{C}_{\mathrm{m}} \mathrm{l}_{\mathrm{m}}=$ total withdrawal load in lbs per lag
$\mathrm{W}^{\prime}=\mathrm{WC}_{\mathrm{D}} \mathrm{C}_{\mathrm{m}}=305 \# /{ }^{\prime} * 1.6 * 1.0=488 \# / \mathrm{in}$
Lag screw design strength $-3 / 8 " \times 5 " \mathrm{lag}, 1_{\mathrm{m}}=5 "-2.375^{\prime \prime}-7 / 32 "=2.4 "$
$\mathrm{T}_{\mathrm{b}}=488 * 2.4 "=1,171 \#$
$\mathrm{Z}_{11}=220$ \# per lag, (horizontal load) NDS Table 12 K
$Z^{\prime}{ }_{11}=220$ \#* $^{*} 1.6^{*} 1.0=352 \#$
$\mathrm{Z}_{\mathrm{T}}=140$ \# per lag, (vertical load)
$\mathrm{Z}_{\mathrm{T}}=140 \# * 1.6 * 1.0=224 \#$

Anchors to be minimum of 7 " center to center and post shall extend $1-1 / 2$ " below bottom anchor.

From $\sum \mathrm{M}$ about end
$\mathrm{M}=\left(8.5{ }^{\prime} * \mathrm{~T}+1.5{ }^{\prime} * 1.5 / 8.5 * \mathrm{~T}\right)=8.76^{\prime \prime} \mathrm{T}$
Allowable post moment

$$
\mathrm{M}_{\mathrm{a}}=972 \# * 8.76 "=8,515 " \#
$$

For $3 / 8^{\prime \prime}$ lag screw okay for 36 " rail height
For 3/8" carriage bolts:
Allowable load per bolt $=0.11 \mathrm{in}^{2} * 20 \mathrm{ksi}=2,200 \#$ For bearing on 2 " square bearing plate - area $=3.8 \mathrm{in}^{2}$

$$
\mathrm{P}_{\mathrm{b}}=3.8 \mathrm{in}^{2} * 1.19 * 405 * 1.33=2,436 \#
$$

$\mathrm{M}_{\mathrm{a}}=2,200 \# * 8.76 "=19,272 " \#$ (exceeds post strength)

For vertical load lag capacity is:
2 lags*187\# = 374\#/post for live load
2 lags\#140\# = 280\#

$\mathrm{D}+\mathrm{L}=200 / 374+60 / 280=0.75<1.0$ okay

For corner posts:
For interior and exterior corners there is four lags, two each way. Two lags will act in withdrawal and two will be in shear: Okay be inference from running posts.

## POST STRENGTH AT BOLT HOLE:

Directly mounted posts require $7 / 16$ " diameter hole through post reducing the post strength at the hole.

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{h}}=0.726-2 *(7 / 16 * 0.125)^{*}(2.255 / 2)^{2}=0.588 \mathrm{in}^{3} \\
& \mathrm{M}_{\text {ared }}=19,000 * 0.588=11,172 " \#
\end{aligned}
$$

Maximum moment calculated at the centerline of the top hole must not exceed $11,172^{\prime \prime} \#=931$ ' $\#$

## STANCHION MOUNT

2 "x1-1/2"x $1 / 8$ " A500 steel tube
Stanchion Strength
$\mathrm{F}_{\mathrm{yc}}=45 \mathrm{ksi}$
$\mathrm{Z}_{\mathrm{yy}}=0.543 \mathrm{in}^{3}$
$\mathrm{M}_{\mathrm{n}}=0.543 \mathrm{in}^{3} * 45 \mathrm{ksi}=24,435 \#$ "
$\mathrm{M}_{\mathrm{s}}=\varnothing \mathrm{M}_{\mathrm{n}} / 1.6=0.9 * 24,435 / 1.6=13,745 \#$ '
Equivalent post top load
42 " post height
$\mathrm{V}=13,745$ " $\# / 42$ " = 327\#
Post may be attached to stanchion with screws or by grouting.
Grout bond strength to stanchion:

$$
\mathrm{A}_{\text {surface }} \sqrt{ } \mathrm{f}^{\prime} \mathrm{c}=7 \cdots * 4^{\prime} * \sqrt{ } 8,000 \mathrm{psi}=2,500 \#
$$

(ignores mechanical bond)
for 200\# maximum uplift the safety factor against pulling out:

$$
\mathrm{SF}=2,500 \# / 200 \#=12.5>3.0 \text { therefore }
$$

okay.


Bearing strength on grout:
From $\sum \mathrm{M}$ about base of stanchion $=0$
$\mathrm{P}_{\mathrm{u}}=\frac{\mathrm{M}+\mathrm{V} * \mathrm{D}}{2 / 3 \mathrm{D}}=$ 2/3D
For: $\mathrm{M}=10,500$ " $\#, \mathrm{~V}=250 \mathrm{lb}, \mathrm{D}=4$ "
$\mathrm{P}_{\mathrm{u}}=\underline{10,500+250 * 4}=4,312 \#$

$$
2 / 3 * 4
$$

$\mathrm{f}_{\mathrm{Bmax}}=\frac{\mathrm{P}_{\mathrm{u}} * 2}{\mathrm{D} * 1.5 " * 0.85}=\frac{4,312 * 2}{4 " * 1.5 \cdots * 0.85}=1,691 \mathrm{psi}$
For: $\mathrm{M}=12,600$ " $\#, \mathrm{~V}=300 \mathrm{lb}, \mathrm{D}=4$ "
$\mathrm{P}_{\mathrm{u}}=\underline{12,600+300 * 4}=5,175 \#$
$2 / 3 * 4$



Post bearing load on top of stanchion for $\mathrm{M}=12,600 \#$ '":
B $=12,600 / 6^{\prime \prime}=2,100$ \#
For 26 ksi allowable bearing pressure, $\mathrm{A}=2.1 / 26=0.081 ", \mathrm{~b}=0.081 / 1.5 "=0.054$ "

HSS 2"x1-1/2"x 1/8" powder coated A500 steel tube stanchion:
Stanchion Strength
$\mathrm{F}_{\mathrm{y}}=46 \mathrm{ksi}$
$\mathrm{Z}_{\mathrm{yy}}=0.475 \mathrm{in}^{3}$
$\mathrm{M}_{\mathrm{n}}=0.475 \mathrm{in}^{3} * 46 \mathrm{ksi}=21,850 \#$ "
$\mathrm{M}_{\mathrm{s}}=\emptyset \mathrm{M}_{\mathrm{n}} / 1.6=0.9 * 21,850 / 1.6=12,291 \#$ "
Equivalent post top load
42" post height
$\mathrm{V}=12,291 " \# / 42 "=293 \#$
May be welded to a steel base plate with fillet weld all around.

## Aluminum Tube Stanchion

$2 " \times 1.5 " \times 1 / 4 " 6061-\mathrm{T} 6$ Aluminum Tube
$\mathrm{F}_{\mathrm{cb}}=21 \mathrm{ksi}$ From ADM Table 2-22
$\mathrm{S}_{\mathrm{yy}}=0.719 \mathrm{in}^{3}$
$\mathrm{M}_{\mathrm{a}}=0.719 \mathrm{in}^{3} * 21 \mathrm{ksi}=15,099 \#$,
Equivalent post top load
42" post height
$\mathrm{V}=15,099 " \# / 42 "=360 \#$
Strength of weld affected aluminum stanchion when welded to base plate:
$\mathrm{F}_{\mathrm{cbw}}=9 \mathrm{ksi}$
$\mathrm{S}_{\mathrm{yy}}=0.719 \mathrm{in}^{3}$
$\mathrm{M}_{\mathrm{a}}=0.719 \mathrm{in}^{3} * 9 \mathrm{ksi}=6,471 \#$ "
Equivalent post top load
42" post height
$\mathrm{V}=6,471 " \# / 42^{\prime \prime}=154 \#$
Because of strength reduction from weld effected metal the aluminum stanchion welded to a base plate typically requires a topping slab to be poured in place over the base plate with a minimum thickness of 2 " above the base plate so that the maximum bending moment occurs outside of the weld effected zone.

When welded to base plate limit the maximum moment on the weld effected zone to 6,471 "\#.

## STANCHION MOUNT - ON BASE PLATE

2"x1-1/2"x 1/8" A304 1/4 hard Stainless steel tube or A500 steel tube powder coated

Stanchion Strength
$\mathrm{F}_{\mathrm{yc}}=50 \mathrm{ksi}$
$\mathrm{Z}_{\mathrm{yy}}=0.543 \mathrm{in}^{3}$
Reserve strength method from SEI ASCE8-02 section 3.3.1.1 procedure II.
where $\mathrm{d}_{\mathrm{c}} / \mathrm{t}=(2 * 2 / 3) / 0.125=10.67<\lambda_{1}$
$\lambda_{1}=1.1 / \sqrt{ }\left(\mathrm{F}_{\mathrm{yc}} / \mathrm{E}_{\mathrm{o}}\right)=1.1 / \sqrt{ }\left(50 / 28 * 10^{3}\right)=26$
$\mathrm{M}_{\mathrm{n}}=0.543 \mathrm{in}^{3} * 50 \mathrm{ksi}=27,148$ \#' $^{\prime}$
$\mathrm{M}_{\mathrm{s}}=\varnothing \mathrm{M}_{\mathrm{n}} / 1.6=0.9 * 27,148 / 1.6=15,270 \# "$
Equivalent post top load
42" post height

$\mathrm{V}=15,270 " \# / 42 "=363 \#$
Weld to base plate : $1 / 8$ " fillet weld all around - develops full wall thickness.
Check weld strength SEI/ASCE 8-02 section 5.2.2: transverse loaded fillet weld:

$$
\begin{aligned}
& \varnothing \mathrm{P}_{\mathrm{n}}=\emptyset \mathrm{tLF} \mathrm{~F}_{\mathrm{ua}}, \text { Use } \mathrm{Z} \text { for } \mathrm{tL} \\
& \mathrm{P}_{\mathrm{n}}=0.55 * 0.362 * 80 \mathrm{ksi} \\
& \mathrm{P}_{\mathrm{n}}=15,928 \\
& \mathrm{Ps}=15,928 / 1.2=13,273 \# "
\end{aligned}
$$

Grout bond strength to stanchion:
$\mathrm{A}_{\text {surface }} \sqrt{ } \mathrm{f}^{\prime \mathrm{c}}=7{ }^{\prime} * * 6^{\prime} * \sqrt{ } 10,000 \mathrm{psi}=4,200 \#$ (ignores mechanical bond)
for 200\# maximum uplift the safety factor against pulling out:
$\mathrm{SF}=4,200 \# / 200 \#=21>3.0$ therefore okay.
Bond strength to post is similar.

## Series 100 Top Rail

Butts into post
Alloy 6063 - T6 Aluminum
Allowable Stress
ADM Table 2-21
$\mathrm{F}_{\mathrm{c}} / \Omega=15.2 \mathrm{ksi}$
Check lateral torsional buckling about strong axis:
$\mathrm{J}=0.2359$ in $^{4}$
$\lambda=2.3\left(\mathrm{~L}_{\mathrm{B}} \mathrm{S}_{\mathrm{C}} /\left(\mathrm{C}_{\mathrm{b}}\left(\mathrm{I}_{\mathrm{y}} \mathrm{J}\right)^{1 / 2}\right)^{1 / 2}=2.3\left(\mathrm{~L}_{\mathrm{b}} * .2455 /\right.\right.$
$\left(1^{*}(.2951 * .2359)^{1 / 2}\right)^{1 / 2}=2.219 \mathrm{~L}_{\mathrm{B}}{ }^{1 / 2}$

## SERIES 100 TOP RAIL



Inelastic buckling controls when $\lambda<\mathrm{C}_{\mathrm{c}}=78$
$78=2.219 \mathrm{~L}_{\mathrm{B}}{ }^{1 / 2}$

$$
\mathrm{L}_{b}=1,236 "
$$

For $L_{b}=60 ", \lambda=17.19$
$\mathrm{Z}_{\mathrm{x}}=0.3880 \mathrm{in}^{3}$
$\mathrm{M}_{\mathrm{nmb}}=\mathrm{M}_{\mathrm{p}}\left(1-\lambda / \mathrm{C}_{\mathrm{c}}\right)+\pi^{2} \mathrm{E} \lambda \mathrm{S}_{\mathrm{xc}} / \mathrm{C}_{\mathrm{c}}{ }^{3}$
$\mathrm{M}_{\mathrm{p}}=30 \mathrm{ksi}^{*} .3880 \mathrm{in}^{3}=11,640$ "\#
$\mathrm{M}_{\mathrm{nmb}}=11,640(1-17.19 / 78)+\pi^{2 *} 10^{*} 10^{6 *} 17.19 * \cdot 2455 / 78^{3}=9,952 " \#$
$\mathrm{M}_{\mathrm{nmb}} / \Omega=9,952 " \# / 1.65=6,032 " \#$
Check local buckling about strong axis:
$\mathrm{R}_{\mathrm{b}} / \mathrm{t}=2.5 " / 0.065 "=38.46>31.2$
$\mathrm{F}_{\mathrm{c}} / \Omega=18.5-.593 * 38.46^{1 / 2}=14.82 \mathrm{ksi}$
$\mathrm{M}_{\mathrm{a}}=14.82 \mathrm{ksi} * 0.2455 \mathrm{in}^{3}=3,638 " \#$ (Controls)
Check local buckling about weak axis:
$\mathrm{b} / \mathrm{t}=1.186 " / 0.065 "=18.25<22.8$
$\mathrm{F}_{\mathrm{c}} / \Omega=15.2 \mathrm{ksi}$ (local buckling does not control)
$\mathrm{M}_{\mathrm{a}}=\left(\mathrm{F}_{\mathrm{c}} / \Omega\right) * \mathrm{Z}_{\mathrm{y}}=15.2 \mathrm{ksi} * 0.3915 \mathrm{in}^{3}=5,951$ " $\#$ (Controls)
Find maximum top rail span:
$\mathrm{L}_{\text {max }}=3,638^{\prime \prime \# *} 4 / 200 \#=72 "$ For single span condition
$\mathrm{L}_{\max }=3,638 " \# *(64 / 13) / 200 \#=89 "$ For two span condition

## SERIES 100 BOTTOM RAIL

Rail Properties:
6063-T6 Aluminum
$\mathrm{I}_{\mathrm{xx}}=0.102 \mathrm{in}^{4}, \mathrm{~S}_{\mathrm{xx}}=0.101 \mathrm{in}^{3}$
$\mathrm{I}_{\mathrm{yy}}=0.164 \mathrm{in}^{4}, \quad \mathrm{~S}_{\mathrm{yy}}=0.193 \mathrm{in}^{3}$
$r_{x x}=0.476 ", \quad r_{y y}=0.603^{\prime \prime}$
$\mathrm{b} / \mathrm{t}=.807 " / .07 "=11.5>7.3$
$\mathrm{Fc} / \Omega=19-0.53 * 11.5=12.9 \mathrm{ksi}$
Allowable Moments $\rightarrow$ Horiz. $=0.193 \mathrm{in}^{3} \cdot 12.9 \mathrm{ksi}=2,490$ " $\#$


Maximum allowable load for 72 " o.c. post spacing

$$
\mathrm{W}=2,490 " \# * 8 /\left(67.625{ }^{\prime \prime}\right)=4.36 \mathrm{pli}=52.27 \mathrm{plf}
$$

$$
\mathrm{P}=2,490 " \# * 4 / 67.625 \prime=147 \#
$$

Max span for 50 plf load $=(8 * 2,490 /(50 / 12))^{1 / 2}=69 "$ clear span

Rail fasteners -Bottom rail connection block to post \#10x1.5" 55 PHP SMS Screw Check shear @ post (6005-T5 or 6061-T6)

2x $\mathrm{F}_{\text {upost }} \mathrm{X}$ dia screw x Post thickness x SF
$\mathrm{V}=2 \cdot 38 \mathrm{ksi} \cdot 0.1697 " \cdot 0.10 " \cdot \frac{1}{3(\mathrm{FS})}=$
$\mathrm{V}=430 \# /$ screw

Since minimum of 2 screws used for each Allowable load $=2 \cdot 430 \#=860 \#$

Rail Connection to RCB
2 screws each end
\#8 Tek screw to 6063-T6

$\mathrm{V}=2 \cdot 30 \mathrm{ksi} \cdot 0.1309 " \cdot 0.07 " \cdot \frac{1}{3(\mathrm{FS})}=183 \#$
$\mathrm{V}_{\mathrm{All}}=2 * 183=366 \#$

Intermediate post used to provide additional support to bottom rail.
1.4 " square 0.1 " wall thickness

Acts in compression only.
Secured to rail with two \#8 tek screws
Shear strength of screws:
\#8 Tek screw to 6063-T6
$\mathrm{V}=2 \cdot 30 \mathrm{ksi} \cdot 0.1309 " \cdot 0.07 " \cdot \frac{1}{3(\mathrm{FS})}=183 \#$
$\mathrm{V}_{\mathrm{All}}=2 * 183=366 \#$

Top rail connection to post face:
Use RCB attached to post with 2 \#10 screws same as bottom rail.
To 6061-T6 or 6005-T5
$\mathrm{V}=2.38 \mathrm{ksi} \cdot 0.1697 " \cdot 0.10 " \cdot \frac{1}{3(\mathrm{FS})}=430 \# /$ screw
Since minimum of 2 screws used for each
Allowable load =
2. 430\# = 860\#

The connection block can be cut square for use in horizontal rail applications or angled for use in sloped applications such


Connection of rail to RCB is with (2) \#8 Tek screw to 6063-T6

$$
\mathrm{V}=2 \cdot 30 \mathrm{ksi} \cdot 0.1309 " \cdot 0.07 " \cdot \frac{1}{3(\mathrm{FS})}=183 \#
$$

$V_{\text {tot }}=2 * 183 \#=366 \# \geq 200 \#$ okay

## Intermediate post fitting

Used for intermediate posts along stairways
Fitting locks into top of post using structural silicone.
Maximum load on fitting is 300 \#
6 ' post spacing * 50 plf $=300 \#$
Shear resisted by direct bearing between fitting and post
area $=2.175 " * 0.1875=0.408$ in $^{2}$
Bearing pressure $=300 \# / .408=736 \mathrm{psi}$
Moment of fitting to post:
This is an intermediate post with rotation of top rail restrained at rail ends.
Moment of fitting is created by eccentricity between bottom of top rail and top of post:

$$
\begin{aligned}
& \mathrm{e}=0.425^{\prime \prime} \\
& \mathrm{M}=300 \# *\left(0.425^{\prime \prime}\right)=127.5 \# "
\end{aligned}
$$

Moment on fitting is resisted by tearing in silicone
Silicone tear strength: From Dow Corning, (silicone manufacturer), CRL 95C Silicone is the same product as the Dow Corning 995 Silicone Structural Glazing Sealant, from Dow Corning product information sheet

Tear strength $\geq 49$ ppi
Peel strength $\geq 40 \mathrm{ppi}$
Ult. tension adhesion $\geq 170 \mathrm{psi}$
Tensile strength $\geq 48$ psi @ $25 \%$ elongation
Tensile strength $\geq 75$ psi @ $50 \%$ elongation
Moment capacity:
$\mathrm{I}_{\mathrm{x}}=2.175 " * 2.175{ }^{\prime}{ }^{2}+2 * 2.175^{3} / 12+2 * 2.175 *(2.175 " / 2)^{2}$
$\mathrm{I}_{\mathrm{x}}=17.15 \mathrm{in}^{4} / \mathrm{in}$
$\mathrm{M}_{\mathrm{a}}=49 \mathrm{ppi}^{*} 17.15 \mathrm{in}^{4} / \mathrm{in} / 2.175$ " $=386$ " $\#$

$\mathrm{SF}=386 \#^{\prime \prime} / 127.5 \#^{\prime \prime}=3>2.0$ okay
Option \#8 Tek screws:
Shear strength $=V=2 \cdot 38 \mathrm{ksi} \cdot 0.1309 " \cdot 0.07 " \cdot \frac{1}{3(\mathrm{FS})}=232 \#$
Added moment capacity $=232 \# * 2.375^{\prime \prime}=551 \# "$

## Series 200 Top rail

Area: 0.887 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.254 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 1.529 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.536$ in
$\mathrm{r}_{\mathrm{yy}}$ : 1.313 in
$\mathrm{C}_{\mathrm{xx}}: 1.194$ in
$C_{y y}: 1.750$ in
$\mathrm{S}_{\mathrm{xx}}: 0.213$ in $^{3}$ bottom
$\mathrm{S}_{\mathrm{xx}}: 0.412 \mathrm{in}^{3}$ top

$\mathrm{Z}_{\mathrm{xx}}: 0.421 \mathrm{in}^{3}$
Syy: 0.874 in $^{3}$
$\mathrm{J}=0.001661 \mathrm{in}^{4}$

6063-T6 Aluminum alloy
For 72 " on center posts; $L=72 "-2.375 "-1 " x 2=67.625 "$
Calculate lateral torsional buckling strength per ADM F.4.2.1
$\mathrm{r}_{\mathrm{ye}}=\left((.254 .5 / .874) *\left(0+.038 * .001661 * 67.625^{2}\right)^{1 / 2}\right)^{1 / 2}=0.557 \mathrm{in}$
$\lambda=67.625 " /(.557)=121.4$
$\mathrm{C}_{\mathrm{c}}=78.4$ for 6063-T6
$\mathrm{F}_{\mathrm{c}} / \Omega=60414 / 121.4^{2}=4.10 \mathrm{ksi}$ (limiting strength for horizontal loading)
Check for local buckling of top element under vertical loading:
$\mathrm{b} / \mathrm{t}=3.125 " / .094 "=33.24$
$\mathrm{F}_{\mathrm{c}} / \Omega=19-.17 * 33.24=13.3 \mathrm{ksi}$ (limiting strength for vertical loading)
Allowable Moments $\rightarrow$ Horiz. $=0.874 \mathrm{in}^{3}{ }^{4.10 \mathrm{ksi}=3,583 \# '}=299 \# '$

$$
\begin{aligned}
\text { Vertical load } & =0.457 \mathrm{in}^{3} \cdot 13.3 \mathrm{ksi}=6,078 \# \prime \text { top compression } \\
\text { or } \quad & =0.421 \mathrm{in}^{3} \cdot 15.2 \mathrm{ksi} \quad=6,399 \# " \text { controls vertical- bottom tension }
\end{aligned}
$$

Maximum allowable load for 72" o.c. post spacing - vertical

$$
\begin{aligned}
& \mathrm{W}=3,583 " \# * 8 /(67.625 " 2)=6.268 \mathrm{pli}=75.2 \mathrm{plf} \\
& \mathrm{P}=3,583 " \# * 4 / 67.625 "=212 \#
\end{aligned}
$$

For horizontal loading:


## Series 200X Top rail

Area: 0.744 sq in
Perim: 18.466 in
$\mathrm{I}_{\mathrm{xx}}: 0.1325 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 0.8512 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.4626$ in
$\mathrm{r}_{\mathrm{yy}}: 0.5660$ in
$\mathrm{C}_{\mathrm{y}, \mathrm{t}}: 0.545$ in
$\mathrm{C}_{\mathrm{y}, \mathrm{b}}: 0.954$ in
$\mathrm{S}_{\mathrm{xx}}: 0.139$ in $^{3}$ bottom $\mathrm{S}_{\mathrm{xx}}: 0.243$ in $^{3}$ top
Syy: $0.566 \mathrm{in}^{3}$

$\mathrm{Z}_{\mathrm{xx}}: 0.246 \mathrm{in}^{3}$
$\mathrm{J}=0.0008104 \mathrm{in}^{4}$
6063-T6 Aluminum alloy
For 72 " on center posts; $L=72 "-2.375 "-1 " x 2=67.625 "$
Calculate lateral torsional buckling strength per ADM F.4.2.1
$\mathrm{r}_{\mathrm{ye}}=\left((.1235 .5 / .243) *\left(0+.038 * .0008104 * 67.625^{2}\right)^{1 / 2}\right)^{1 / 2}=0.737 \mathrm{in}$
$\lambda=67.625 " /(.737)=91.76$
$\mathrm{C}_{\mathrm{c}}=78.4$ for $6063-\mathrm{T} 6$
$\mathrm{F}_{\mathrm{c}} / \Omega=60414 / 91.76^{2}=7.18 \mathrm{ksi}$ (limiting strength for horizontal loading)
Check for local buckling of top element under vertical loading:
$\mathrm{b} / \mathrm{t}=2.571 " / .074 "=34.74$
$\mathrm{F}_{\mathrm{c}} / \Omega=19-.17 * 34.74=13.1 \mathrm{ksi}$ (limiting strength for vertical loading)
Allowable Moments $\rightarrow$ Horiz. $=0.566 \mathrm{in}^{3} \cdot 7.18 \mathrm{ksi}=4,064 \# \prime \prime=339 \# \prime$
Vertical load $=0.243 \mathrm{in}^{3} \cdot 13.1 \mathrm{ksi}=3,183$ \#' $^{\prime \prime}$ top compression or $\quad=0.246 \mathrm{in}^{3} \cdot 15.2 \mathrm{ksi}=3,739 \#$ " controls vertical- bottom tension

Maximum allowable load for 72" o.c. post spacing - vertical

$$
\mathrm{W}=3,183 " \# * 8 /(67.625 \cdots 2)=5.568 \mathrm{pli}=66.8 \mathrm{plf}
$$

$\mathrm{P}=3,183 " \# * 4 / 67.625 "=188 \#$ (Load share with bottom rail needed for 6 ' spans)
Maximum allowable load for 72" o.c. post spacing - horizontal

$$
\begin{aligned}
& \mathrm{W}=4,064 " \# * 8 /\left(67.625 "{ }^{2}\right)=7.11 \mathrm{pli}=85.3 \mathrm{plf} \\
& \mathrm{P}=4,064 " \# * 4 / 67.625 "=240 \#
\end{aligned}
$$

For horizontal loading:
$\Delta_{\text {max }}=200^{*} 72^{3} /\left(48^{*} 10 \times 10^{6 *} 0.8512 \mathrm{in}^{4}\right)=0.182^{\prime \prime}$

## Series 300 Top Rail

Area: 0.881 sq in
Perim: 21.29 in
$\mathrm{I}_{\mathrm{xx}}: 0.581 \mathrm{in}^{4} \quad \mathrm{I}_{\mathrm{yy}}: 1.07 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.400$ in $\quad \mathrm{r}_{\mathrm{yy}}: 1.15$ in
$\mathrm{C}_{\mathrm{xx}, \mathrm{b}}: 1.444$ in $\mathrm{C}_{\mathrm{xx}, \mathrm{t}}: 1.438$ in
$S_{x x, t}: 0.404 \mathrm{in}^{3} \quad \mathrm{~S}_{\mathrm{yy}}: 0.662 \mathrm{in}^{3}$
$\mathrm{Z}_{\mathrm{xx}}: 0.575 \mathrm{in}^{3} \quad \mathrm{Z}_{\mathrm{yy}}: 0.864 \mathrm{in}^{3}$
$\mathrm{J}=0.0005419 \mathrm{in}^{4}$
Allowable stresses ADM Table 2-21


6063-T6 Aluminum alloy
For 72 " on center posts; $L=72 "-2.375 "-1 " x 2=67.625 "$
Calculate lateral torsional buckling strength per ADM F.4.2.1
$\mathrm{r}_{\mathrm{ye}}=\left((1.07 .5 / .404)^{*}\left(0+.038^{*} .0005419 * 67.625^{2}\right)^{1 / 2}\right)^{1 / 2}=0.886$ in
$\lambda=67.625 " /(.886 ")=76.33$
$\mathrm{C}_{\mathrm{c}}=78.4$ for $6063-\mathrm{T} 6$
$\mathrm{M}_{\mathrm{p}}=0.864 \mathrm{in}^{3 *} 15.2 \mathrm{ksi}=13,133$ " $\#$
$\mathrm{M}_{\mathrm{nmb}}=13,133 *(1-76.33 / 78.4)+\pi^{2 *} 10.1^{*} 10^{6 *} 76.33^{*} .662 / 78.4^{3}=10,799^{"} \#$
Check for local buckling of top curved element under vertical loading: $\mathrm{R}_{\mathrm{b}} / \mathrm{t}=1.5 " / .086^{\prime \prime}=17.44<31.2$ Local buckling does not control

$$
\begin{aligned}
\text { Allowable Moments } \rightarrow \text { Horiz. } & =10,799 " \# / 1.65=6,545 " \# \\
& \text { Vertical }=0.575 \mathrm{in}^{3} \cdot 15.2 \mathrm{ksi}=8,740 \# " \text { controls vertical- bottom tension }
\end{aligned}
$$

Maximum allowable load for 72" o.c. post spacing

$$
\mathrm{W}=6,545 " \# * 8 /\left(67.625^{\prime \prime}\right)=11.45 \mathrm{pli}=137.4 \mathrm{plf}
$$

$$
P=6,545^{\prime \prime} \# * 4 / 67.625^{\prime \prime}=387 \#\left(\text { Load share with bottom rail needed for } 6^{\prime} \text { spans }\right)
$$

Rail to post connection: Direct bearing for downward forces and horizontal forces:
For uplift connected by (2) \#10 Tek screws each post:
2x FupostX dia screw x Post thickness / SF (ADM 5.4.3)
$\mathrm{V}=2 \cdot 30 \mathrm{ksi}{ }^{\prime} 0.1379^{\prime \prime} \cdot 0.09 " / 3=325 \# /$ screw
For horizontal loading:
$\Delta_{\text {max }}=200 * 72^{3} /\left(48^{*} 10 \times 10^{6 *} 1.07 \mathrm{in}^{4}\right)=0.145^{\prime \prime}$

Top rail 300X
Wall thickness $\mathrm{t}=0.09375^{\prime \prime}$ min.
Allowable stresses ADM
Table 2-24
line 11
$\mathrm{F}_{\mathrm{Cb}} \rightarrow \mathrm{L} / \mathrm{r}_{\mathrm{y}}=$
$\left(72-23 / 8^{\prime \prime}-2.1^{\prime \prime}\right)=59.4$ 1.137

Based on 72" max post spacing

$\mathrm{F}_{\mathrm{Cb}}=16.7-0.073(59.4)=$ 12.36 ksi
$\mathrm{M}_{\text {all horiz }}=12.36^{\text {ksi }}$ • $(0.656)=8,111$ "\#
Vertical loads shared with bottom rail
For vertical load $\rightarrow$ bottom in tension top comp.
$\mathrm{F}_{\mathrm{b}}=18 \mathrm{ksi}$ line 3
$\mathrm{F}_{\mathrm{c}}=18 \mathrm{ksi}$ line 16.1

$$
\mathrm{M}_{\text {all vert }}=\left(0.309 \mathrm{in}^{4}\right) \bullet 18 \mathrm{ksi}=5,562^{\prime \prime} \text { \# }
$$

Allowable loads

$$
\begin{aligned}
& \text { Horizontal } \rightarrow \text { uniform } \rightarrow \mathrm{W}=\frac{8,111 \cdot 8}{72^{2}}=12.5 \# \text { /in }=\mathrm{W}=150 \mathrm{plf} \\
& \qquad \mathrm{P}_{\mathrm{H}}=\frac{4 \cdot 8,111}{72}=451 \#
\end{aligned}
$$

$$
\begin{aligned}
& \text { Vertical } \left.\rightarrow \mathrm{W}=\frac{5,562 \cdot 8}{72^{2}}=5.6 \# / \text { in }=103 \text { plf (Top rail alone }\right) \\
& \qquad \mathrm{P}=\frac{5,562 \cdot 4}{72}=309 \#
\end{aligned}
$$

For horizontal loading:
$\Delta_{\max }=200 * 72^{3} /\left(48^{*} 10 \times 10^{6 *} 0.984 \mathrm{in}^{4}\right)=0.158 "$

Insert channel for glass - 6063-T6

$$
\begin{array}{ll}
\mathrm{I}_{\mathrm{yy}}=0.156 \mathrm{in}^{4} & \mathrm{I}_{\mathrm{xx}}=0.023 \mathrm{in}^{4} \\
\mathrm{~S}_{\mathrm{yy}}=0.125 \mathrm{in}^{3} & \mathrm{~S}_{\mathrm{xx}}=0.049 \mathrm{in}^{4}
\end{array}
$$



Insert compression locks into top rail Horizontal forces transferred between insert and top rail by direct bearing on locking tabs.

Bearing area $=1 / 8^{\prime \prime}$ width
Allowable bearing load will be controlled by spreading of top rail
Check significance of circumferential stress:
$\mathrm{R} / \mathrm{t}=3 " / 0.09375=32>5$ therefore can assume plane bending and error will be minimal
$\mathrm{M}=2.08^{\prime} * \mathrm{~W}$
$\mathrm{M}_{\mathrm{all}}=\mathrm{S} * \mathrm{~F}_{\mathrm{b}}$
$\mathrm{F}_{\mathrm{b}}=20 \mathrm{ksi}$ for flat element bending in own plane,


AT POSTS
ADM Table 2-21
$\mathrm{S}=12 \mathrm{\prime} / \mathrm{ft} *(0.094)^{2} / 6=0.0177 \mathrm{in}^{3}$
$\mathrm{W}_{\mathrm{all}}=\mathrm{M}_{\mathrm{all}} / 2.08^{\prime \prime}=\left(\mathrm{S}^{*} \mathrm{~F}_{\mathrm{b}}\right) / 2.08^{\prime \prime}=\left(0.0177 \mathrm{in}^{3} * 20 \mathrm{ksi}\right) / 2.08^{\prime \prime}=170 \mathrm{plf}$
For 36 " panel height $-1 / 2$ will be tributary to top rail:
Maximum live load $=170 \mathrm{plf} /\left(3^{\prime} / 2\right)=113 \mathrm{psf}$.
Check deflection:

$$
\begin{aligned}
& \Delta=\mathrm{WL}^{3} /(3 \mathrm{EI}) \\
& \mathrm{I}=12^{*} * 0.09375^{3} / 12=.000824 \mathrm{in}^{4} \\
& \Delta=170 \mathrm{plf}^{*} * 2.08^{3} /\left(3 * 10.1 \times 10^{6 *} .000824\right)=0.06 "
\end{aligned}
$$

The required deflection to cause the infill to disengage: 0.05 "
Reduce allowable load to limit total deflection:
$0.05 / 0.06 * 113 \mathrm{plf}=94 \mathrm{plf}$

## Top rail connection to post:

For Vertical loads top rail is restrained by (2) \#10 tek screws each side.
Connection of bracket to post is with (2) \#14 screws so is stronger.

For horizontal loads the top rail directly bears on side of post.

Tek screw strength: Check shear @ rail (6063-T6)


2x $\mathrm{F}_{\text {urail }}$ dia screw x Rail thickness x SF
$\mathrm{V}=2 \cdot 30$ ksi $\cdot 0.1379 " \cdot 0.09 " \cdot \frac{1}{3(\mathrm{FS})}=325 \# /$ screw

Since minimum of 2 screws used for each
Allowable load $=2 \cdot 325 \#=650 \#$
Post bearing strength

$$
\begin{aligned}
& \mathrm{V}_{\text {all }}=\mathrm{A}_{\text {bearing }} * \mathrm{~F}_{\mathrm{B}} \\
& \mathrm{~A}_{\text {bearing }}=0.09 " * 2.25 "=0.2025 \mathrm{in}^{2} \\
& \mathrm{~F}_{\mathrm{B}}=21 \mathrm{ksi} \\
& \mathrm{~V}_{\text {all }}=0.2025 \mathrm{in}^{2} * 21 \mathrm{ksi}=4.25 \mathrm{k}
\end{aligned}
$$

Bracket tab bending strength
Vertical uplift force
For 5052-H32 aluminum stamping 1/8" thick
$\mathrm{F}_{\mathrm{b}}=18 \mathrm{ksi}-$ ADM Table 2-09

$\mathrm{S}=0.438^{*} *(.125)^{3} / 12=0.00007 \mathrm{in}^{3}$
$\mathrm{M}_{\mathrm{a}}=18 \mathrm{ksi} * 0.00007=126^{\prime \prime} \#$
$\mathrm{P}_{\mathrm{a}}=\mathrm{M}_{\mathrm{a}} / \mathrm{l}=126^{\prime \prime} \# / 1.158 "=109 \#$
Uplift limited by bracket strength:

$$
\mathrm{Up}_{\mathrm{all}}=2 * 109=218 \# \text { per bracket }
$$

## RAIL SPLICES:

Splice plate strength:
Vertical load will be direct bearing from rail/plate to post no bending or shear in plate.
Horizontal load will be transferred by shear in the fasteners.
Rail to splice plates:
\#8 Tek screw strength: Check shear @ rail (6063-T6)
2x $\mathrm{F}_{\text {urail }}$ dia screw x rail thickness x SF
$\mathrm{V}=2 \cdot 30 \mathrm{ksi} \cdot 0.1379 " \cdot 0.09 " \cdot \frac{1}{3(\mathrm{FS})}=325 \# /$ screw; for two screws $=650 \#$
or $\mathrm{F}_{\text {urplate }} \mathrm{X}$ dia screw x plate thickness x SF
$\mathrm{V}=38 \mathrm{ksi}{ }^{\circ} 0.1379 " \cdot 0.125 " \cdot \frac{1}{3(\mathrm{FS})}=218 \# /$ screw; for two screws $=436 \#$
Post to splice plate:
Screws into post screw chase so screw to post connection will not control. splice plate screw shear strength
2x $\mathrm{F}_{\text {uplate }} \mathrm{X}$ dia screw x plate thickness x SF
$\mathrm{V}=2 \cdot 38 \mathrm{ksi} \cdot 0.1379 " \cdot 0.125 " \cdot \frac{1}{3(\mathrm{FS})}=416 \# / \mathrm{screw} ;$ for two screws $=832 \#$
Check moment from horizontal load:
$\mathrm{M}=\mathrm{P}^{*} 0.75$ ". For 200 \# maximum load from a single rail on to splice plates
$\mathrm{M}=0.75^{*} 200=150 \#$ "
$\mathrm{S}=0.125 *(0.625)^{2} / 6=0.008 \mathrm{in}^{3}$
$\mathrm{f}_{\mathrm{b}}=150 \# " /(0.008 * 2)=9,216 \mathrm{psi}$


For corner brackets screw strength and bending strength will be the same.
Single full width bar may be used instead of the two $5 / 8^{\prime \prime}$ bars.
May be used to create vertical miters and splice rail sections.
May be used with \#10 tek screws.


Insert channel for glass - 6063-T6

$$
\begin{array}{ll}
\mathrm{I}_{\mathrm{yy}}=0.156 \mathrm{in}^{4} & \mathrm{I}_{\mathrm{xx}}=0.023 \mathrm{in}^{4} \\
\mathrm{~S}_{\mathrm{yy}}=0.125 \mathrm{in}^{3} & \mathrm{~S}_{\mathrm{xx}}=0.049 \mathrm{in}^{4}
\end{array}
$$



Insert compression locks into top rail
Horizontal forces transferred between insert and top rail by direct bearing on locking tabs.

Bearing area $=1 / 8^{\prime \prime}$ width
Allowable bearing load will be controlled by spreading of top rail

$$
\begin{aligned}
& \mathrm{M}=2.08 " * \mathrm{~W} \\
& \mathrm{M}_{\text {all }}=\mathrm{S}^{*} \mathrm{~F}_{\mathrm{b}} \\
& \mathrm{~F}_{\mathrm{b}}=20 \mathrm{ksi} \text { for flat element bending in own plane, ADM Table 2-24 } \\
& \mathrm{S}=12^{\prime \prime} / \mathrm{ft} *(0.094)^{2} / 6=0.0177 \mathrm{in}^{3} \\
& \mathrm{~W}_{\text {all }}=\mathrm{M}_{\mathrm{all}} / 2.08^{\prime \prime}=\left(\mathrm{S}^{*} \mathrm{~F}_{\mathrm{b}}\right) / 2.08^{\prime \prime}=\left(0.0177 \mathrm{in}^{3} * 20 \mathrm{ksi}\right) / 2.08^{\prime \prime}=170 \mathrm{plf}
\end{aligned}
$$

For 36 " panel height $-1 / 2$ will be tributary to top rail:
Maximum wind load $=170 \mathrm{plf} /\left(3^{\prime} / 2\right)=113 \mathrm{psf}$.

Insert channel for picket infill - 6063-T6

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{yy}}=0.144 \mathrm{in}^{4} \mathrm{I}_{\mathrm{xx}}=0.0013 \mathrm{in}^{4} \\
& \mathrm{~S}_{\mathrm{yy}}=0.115 \mathrm{in}^{3} \quad S_{\mathrm{xx}}=0.0057 \mathrm{in}^{4}
\end{aligned}
$$

Insert compression locks into top rail Horizontal forces transferred between insert and top
 rail by direct bearing on locking tabs.

Bearing area $=1 / 8^{\prime \prime}$ width
Allowable bearing load will be controlled by spreading of top rail

$$
\begin{aligned}
& \mathrm{M}=2.08 " * \mathrm{~W} \\
& \mathrm{M}_{\mathrm{all}}=\mathrm{S}^{*} \mathrm{~F}_{\mathrm{b}} \\
& \mathrm{~F}_{\mathrm{b}}=20 \mathrm{ksi} \text { for flat element bending in own plane, ADM Table 2-24 } \\
& \mathrm{S}=12 " / \mathrm{ft} *(0.094)^{2 / 6}=0.0177 \mathrm{in}^{3} \\
& \mathrm{~W}_{\text {all }}=\mathrm{M}_{\mathrm{all}} / 2.08 "=\left(\mathrm{S}^{*} \mathrm{~F}_{\mathrm{b}}\right) / 2.08^{" \prime}=\left(0.0177 \mathrm{in}^{3} * 20 \mathrm{ksi}\right) / 2.08 "=170 \mathrm{plf}
\end{aligned}
$$

For 36 " panel height $-1 / 2$ will be tributary to top rail:
Maximum live load $=170 \mathrm{plf} /\left(3^{\prime} / 2\right)=113 \mathrm{psf}$.

## Top Rail Series 320

$\mathrm{I}_{\mathrm{xx}}=0.118 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}=0.796 \mathrm{in}^{4}$
$\mathrm{S}_{\mathrm{xx}, \text { bot }}=0.129 \mathrm{in}^{3}$
$\mathrm{S}_{\mathrm{xx}, \text { top }}=0.201 \mathrm{in}^{3}$
$Z_{\mathrm{xx}}=0.244 \mathrm{in}^{3}$
$S_{y y}=0.531 \mathrm{in}^{3}$
$\mathrm{Z}_{\mathrm{yy}}=0.669 \mathrm{in}^{3}$
$\mathrm{J}=0.001730 \mathrm{in}^{4}$

Allowable stresses


6063-T6 Aluminum
For 72 " on center posts; $L=72 "-2.375 "-1 " x 2=67.625 "$
Calculate lateral torsional buckling strength per ADM F.4.2.1
$\mathrm{r}_{\mathrm{ye}}=\left((.118 .5 / .129) *\left(0+.038 * .00173 * 67.625^{2}\right)^{1 / 2}\right)^{1 / 2}=0.907$ in
$\lambda=67.625 " /\left(.907^{\prime \prime}\right)=74.6$
$\mathrm{C}_{\mathrm{c}}=78.4$ for $6063-\mathrm{T} 6$
$\mathrm{M}_{\mathrm{p}}=0.669 \mathrm{in}^{3}{ }^{*} 25 \mathrm{ksi}=16,725$ "\#
$\mathrm{M}_{\mathrm{nmb}}=16,725$ " $\#(1-74.6 / 78.4)+\pi^{2 *} 10.1^{*} 10^{6 *} 74.6^{*} 0.531 / 78.4^{3}=9,005$ " $\#$

Check for local buckling of top curved element under vertical loading:
$\mathrm{R}_{\mathrm{b}} / \mathrm{t}=3.687 " / 0.1 "=36.87>31.2$ Local buckling controls
$\mathrm{F}_{\mathrm{c}} / \Omega=18.5-.593 * 36.87^{1 / 2}=14.90 \mathrm{ksi}$
Allowable Moments $\rightarrow$ Horiz. $=9,005$ "\# (Inelastic lateral torsional buckling)
Vertical $=0.244 \mathrm{in}^{3} \cdot 15.2 \mathrm{ksi}=3,709 " \#$ (Yielding)
Vertical $=0.201 \mathrm{in}^{3 *} 14.9 \mathrm{ksi}=2,995 " \#($ Local Buckling $)$
Maximum allowable load for 72" o.c. post spacing

$$
\begin{aligned}
& \mathrm{W}=2,995 " \# * 8 /\left(67.625 ״{ }^{\prime \prime}\right)=5.24 \mathrm{pli}=62.9 \mathrm{plf} \\
& \mathrm{P}=2,995 " \# * 4 / 67.625 "=177 \#(\text { Load share with bottom rail needed for } 6 \text { ' spans })
\end{aligned}
$$

For horizontal loading:
$\Delta_{\text {max }}=200 * 72^{3 /} /\left(48 * 10 \times 10^{6 *} 0.796 \mathrm{in}^{4}\right)=0.195^{\prime \prime}$

Top Rail Series 350

Area: 0.725 sq in
Perim: 21.338 in
Ixx: 0.263 in^4
lyy: 1.398 in^4
rxx: 0.602 in
ryy: 1.389 in

Cxx: 1.128 in
Cyy: 1.875 in
Sxx: 0.233 in^3
Syy: 0.737 in^3


Allowable stresses ADM Table 2-22
6063-T6 Aluminum alloy
For 72 " on center posts; $L=72 "-2.375 "-1 " x 2=67.625 "$
Calculate lateral torsional buckling strength per ADM F.4.2.1
$\mathrm{r}_{\mathrm{ye}}=\left((.263 .5 / .737)^{*}\left(0+.038 * .0008041^{*} 67.625^{2}\right)^{1 / 2}\right)^{1 / 2}=0.907$ in
$\lambda=67.625 " /\left(.907^{\prime \prime}\right)=74.6$
$\mathrm{C}_{\mathrm{c}}=78.4$ for $6063-\mathrm{T} 6$
$\mathrm{F}_{\mathrm{c}} / \Omega=60414 / 74.6^{2}=10.86 \mathrm{ksi}$ (limiting strength for horizontal loading)
Check for local buckling of top curved element under vertical loading:
$\mathrm{R}_{\mathrm{b}} / \mathrm{t}=2.5 " / .07 "=35.7>31.2$ Local buckling controls $\mathrm{F}_{\mathrm{c}} / \Omega=18.5-.593 * 35.7^{-5}=15.0 \mathrm{ksi}$

Allowable Moments $\rightarrow$ Horiz. $=0.737$ in $^{3 *} 10.86 \mathrm{ksi}=8,004$ " $\#$
Vertical $=0.282 \mathrm{in}^{3} \cdot 15.0 \mathrm{ksi}=4,230^{\prime \prime} \#$
Vertical $=0.3584 \mathrm{in}^{3 *} 15.2 \mathrm{ksi}=5,448^{\prime \prime} \#$
Maximum allowable load for 72 " o.c. post spacing

$$
\mathrm{W}=4,230 " \# * 8 /(67.625>2)=7.40 \mathrm{pli}=88.8 \mathrm{plf}
$$

$$
\mathrm{P}=4,230 " \# * 4 / 67.625^{\prime \prime}=250 \#(\text { Load share with bottom rail needed for } 6 \text { ' spans })
$$

For horizontal loading:
$\Delta_{\max }=200 * 72^{3} /\left(48 * 10 \times 10^{6 *} 1.398 \mathrm{in}^{4}\right)=0.111$ "

## Series 400 Top rail

$\mathrm{I}_{\mathrm{xx}}: 0.611 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 3.736 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{xx}}: 0.717$ in
$\mathrm{r}_{\mathrm{yy}}$ : 1.774 in
$\mathrm{C}_{\mathrm{xx}}: 1.358$ in
$\mathrm{C}_{\mathrm{yy}}: 2.50$ in
$\mathrm{S}_{\mathrm{xx}}: 0.450$ in $^{3}$ bottom
$\mathrm{S}_{\mathrm{xx}}: 0.399 \mathrm{in}^{3}$ top
$S_{y y}: 1.494$ in $^{3}$
6063-T6 Aluminum alloy
For 72" on center posts;
$\mathrm{L}=72$ " -2.375 " -1 " $\mathrm{x} 2=$

67.625 "

Calculate lateral torsional buckling strength per ADM F.4.2.1
$\mathrm{r}_{\mathrm{ye}}=\left((.611 .5 / 1.494) *\left(0+.038 * .00219 * 67.625^{2}\right)^{1 / 2}\right)^{1 / 2}=0.568$ in
$\lambda=67.625 " /(.568 ")=119$
$\mathrm{C}_{\mathrm{c}}=78.4$ for 6063-T6
$\mathrm{F}_{\mathrm{c}} / \Omega=60414 / 119^{2}=4.266 \mathrm{ksi}$ (limiting strength for horizontal loading)
Check for local buckling of top curved element under vertical loading:
$\mathrm{R}_{\mathrm{b}} / \mathrm{t}=12 " / .087 "=138>31.2$ Local buckling controls
$\mathrm{F}_{\mathrm{c}} / \Omega=18.5-0.593^{*} 119^{1 / 2}=12.03 \mathrm{ksi}$
Allowable Moments $\rightarrow$ Horiz. $=1.494 \mathrm{in}^{3 *} 4.266 \mathrm{ksi}=6,373$ " $\#$
Vertical $=0.399 \mathrm{in}^{3} \cdot 12.03 \mathrm{ksi}=4,800^{\prime \prime} \#$
Vertical $=0.772 \mathrm{in}^{3 *} 15.2 \mathrm{ksi}=11,734 " \#$

Maximum allowable load for $72 "$ o.c. post spacing

$$
\begin{aligned}
& \mathrm{W}=4,800 " \# * 8 /(67.625 " 2)=8.40 \mathrm{pli}=101 \mathrm{plf} \\
& \mathrm{P}=4,800 " \# * 4 / 67.625 "=284 \#
\end{aligned}
$$

For horizontal loading:
$\Delta_{\text {max }}=200 * 72^{3 /\left(48 * 10 \times 10^{6} * 3.736 \mathrm{in}^{4}\right)=0.042 " ~}$

## SERIES 400 TOP RAIL COMPOSITE MATERIAL OR

Alloy 6063 - T6 Aluminum
$\mathrm{I}_{\mathrm{xx}}: 0.0138 \mathrm{in}^{4} ; \mathrm{I}_{\mathrm{yy}}: 0.265 \mathrm{in}^{4}$
$\mathrm{C}_{\mathrm{xx}}: 0.573$ in; $\mathrm{C}_{\mathrm{yy}}: 1.344$ in
$S_{x x}: 0.024$ in $^{3} ; S_{y y}: 0.197 \mathrm{in}^{3}$
Wood
2"x4" nominal
$\mathrm{I}_{\mathrm{xx}}: 0.984 \mathrm{in}^{4} ; \quad \mathrm{I}_{\mathrm{yy}}: 5.359 \mathrm{in}^{4}$
$\mathrm{C}_{\mathrm{xx}}: 0.75 \mathrm{in} ; \quad \mathrm{C}_{\mathrm{yy}}: 1.75$ in
$\mathrm{S}_{\mathrm{xx}}: 1.313 \mathrm{in}^{3} ; \mathrm{S}_{\mathrm{yy}}: 3.063 \mathrm{in}^{3}$


For wood use allowable stress from NDS Table
4A for lowest strength wood that may be used:
$\mathrm{F}_{\mathrm{b}}=725 \mathrm{psi}$ (mixed maple \#1), $\mathrm{C}_{\mathrm{D}}=1.6, \mathrm{C}_{\mathrm{F}}=1.5$
$\mathrm{F}_{\mathrm{b}}=725 * 1.6 * 1.5=1,740 \mathrm{psi}$
$\mathrm{F}{ }_{\mathrm{b}}=725^{*} 1.6^{*} 1.5 * 1.1=1,914 \mathrm{psi}$ for flat use (vertical loading)
Composite action between aluminum and wood:

$$
\mathrm{n}=\mathrm{E}_{\mathrm{a}} / \mathrm{E}_{\mathrm{w}}=10.1 / 1.1=9.18
$$

Composite Shape Section Properties
Effective properties adjusted for $\mathrm{E}=10.1^{*} 10^{3} \mathrm{ksi}$
$\mathrm{I}_{\mathrm{xx}}=0.2763 \mathrm{in}^{4} \quad \mathrm{I}_{\mathrm{yy}}=0.8484 \mathrm{in}^{4}$
Allowable Stress for aluminum: ADM Table 2-21
$\mathrm{F}_{\mathrm{T}}=15.2 \mathrm{ksi}$
$\mathrm{F}_{\mathrm{C}} \rightarrow 6$ ' span
Rail is braced by wood At 16 " o.c. and legs have stiffeners therefore
$\mathrm{F}_{\mathrm{c}}=15.2 \mathrm{ksi}$
Vertical loading: $\mathrm{M}_{\mathrm{a}, \mathrm{x}}=1,914 \mathrm{psi}^{*} 0.2763 \mathrm{in}^{4} / 1.0427 \times * 9.18=4,656 " \#$ (Wood failure)
$\mathrm{M}_{\mathrm{a}, \mathrm{x}}=15.2 \mathrm{ksi}^{*} 0.2763 \mathrm{in}^{4} / 1.2073 "=3,479 " \#$ (Aluminum failure controls)
Horizontal loading: $\mathrm{M}_{\mathrm{a}, \mathrm{y}}=1,740 \mathrm{psi} * 0.8484 \mathrm{in}^{4} / 1.75 " * 9.18=7,744 " \#$ (Wood failure controls) $\mathrm{M}_{\mathrm{a}, \mathrm{x}}=15.2 \mathrm{ksi}^{*} 0.8484 \mathrm{in}^{4} / 1.3434 "=9,599 " \#$ (Aluminum failure)

Maximum allowable load for 72 " o.c. post spacing
$\mathrm{W}=3,479 " \# * 8 /\left(67.625{ }^{\prime 2}\right)=6.09 \mathrm{pli}=73 \mathrm{plf}$
$\mathrm{P}=3,479 " \# * 4 / 67.625 "=206 \#$

Connection between aluminum and wood needs to be able to resist transverse shear for vertical loading.

V=200\#/2=100\# (Midspan 200\# concentrated load)
$v=V Q / I$
$\mathrm{Q}=\mathrm{YA}=.6338^{\prime} * .26406 \mathrm{in}^{2}=0.1674 \mathrm{in}^{3}$
$\mathrm{v}=100 \# * 0.1674 \mathrm{in}^{3} / 0.2763 \mathrm{in}^{4}=60.59 \mathrm{pli}=727.0 \mathrm{plf}$
Use \#6 Wood Screws (Larger screws do not appreciably increase shear strength due to limited penetration and will increase probability of splitting)
$Z^{\prime}=1.6^{*} 76 \#=122$ \# each
Aluminum bearing $=2 * .138 " * .062 " * 30 \mathrm{ksi} / 3=171 \#$
Screw spacing to create composite bending at service loading $=122 \# / 60.59 \mathrm{pli}=>2$ " O.C staggered

Adhesive strength to create composite bending in lieu of screws $=60.59 \mathrm{pli} / 2.6875^{\prime \prime}=22.5 \mathrm{psi}$
COMPOSITES: Composite materials, plastic lumber or similar may be used provided that the size and strength is comparable to the wood.

## Series 500 Top rail

Area: 0.854 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.262 \mathrm{in}^{4}$
$\mathrm{K}_{\mathrm{xx}}: 0.553$ in
$\mathrm{C}_{\mathrm{xx}}: 1.184$ in
$\mathrm{S}_{\mathrm{xx}}: 0.221 \mathrm{in}^{3}$
$\mathrm{Z}_{\mathrm{xx}}: 0.405 \mathrm{in}^{3}$
J: $0.001801 \mathrm{in}^{4}$
Perim: 20.44 in
$\mathrm{I}_{\mathrm{yy}}: 3.204 \mathrm{in}^{4}$
$\mathrm{K}_{\mathrm{yy}}: 1.936$ in
Cyy: 2.497 in
Syy: $1.283 \mathrm{in}^{3}$
$\mathrm{Z}_{\mathrm{yy}}: 1.593 \mathrm{in}^{3}$

Infill Piece
Area: 0.410 sq in
Perim: 12.145 in
$\mathrm{I}_{\mathrm{xx}}: 0.028 \mathrm{in}^{4} \quad \mathrm{I}_{\mathrm{yy}}: 0.553 \mathrm{in}^{4}$
$\mathrm{K}_{\mathrm{xx}}: 0.261$ in $\quad \mathrm{K}_{\mathrm{yy}}: 1.161$ in
$\mathrm{C}_{\mathrm{xx}}: 0.534$ in $\quad \mathrm{C}_{\mathrm{yy}}: 2.061$ in
$S_{x x}: 0.052$ in $^{3} \quad S_{y y}: 0.268$ in $^{3}$


6063-T6 Aluminum alloy
Determine Maximum Post Spacing: -
Horizontal load ADM 3.4.15
If designed as a curved element, $\mathrm{R}_{\mathrm{b}} / \mathrm{t}=12.5 " / .086 "=145$

$$
\mathrm{F}_{\mathrm{c}} / \Omega=18.5-.593 * 145^{1 / 2}=11.4 \mathrm{ksi}
$$

Calculate lateral torsional buckling strength per ADM F.4.2.1
$\mathrm{r}_{\mathrm{ye}}=\left((.262 .5 / 1.283) *\left(0+.038 * .001801 * 67.625^{2}\right)^{1 / 2}\right)^{1 / 2}=0.472$ in
$\lambda=67.625 " /(.472 ")=143$
$\mathrm{C}_{\mathrm{c}}=78.4$ for $6063-\mathrm{T} 6$
$\mathrm{F}_{\mathrm{c}} / \Omega=60414 / 143^{2}=2.95 \mathrm{ksi}$ (limiting strength for horizontal loading)
Allowable Moments $\rightarrow$ Horiz. $=1.283 \mathrm{in}^{3 *} 2.95 \mathrm{ksi}=3,785$ " $\#$
Vertical $=0.221 \mathrm{in}^{3} \cdot 11.4 \mathrm{ksi}=2,519^{\prime \prime} \#$
Maximum allowable load for 72 " o.c. post spacing

$$
\mathrm{W}=2,519 " \# * 8 /(67.625 \gg 2)=4.41 \mathrm{pli}=52.9 \mathrm{plf}
$$

$\mathrm{P}=2,519 " \# * 4 / 67.625 "=150 \#($ Load share with bottom rail required $)$
For horizontal loading:
$\Delta_{\text {max }}=200 * 72^{3} /\left(48^{*} 10 \times 10^{6 *}\left(3.204+0.553 \mathrm{in}^{4}\right)=0.041 "\right.$

## Glass Infill Bottom Rail

6063-T6


Area: 0.3923 sq in Perim: 11.648 in

Ixx: 0.0869 in $^{\wedge} 4$
Iyy: $0.172 \mathrm{in}^{\wedge} 4$
Kxx: 0.472 in
Kyy: 0.662 in
Cxx: 1.0133 in
Cyy: 0.8435 in
Sxx: 0.0857 in^3 Bottom Sxx: 0.129 in^3 Top
Syy: 0.204 in^3
b/t = 1.397"/0.07" = 19.96
$\mathrm{F}_{\mathrm{c}} / \Omega=155 / 19.96=7.77 \mathrm{ksi}$
Allowable Moments $\rightarrow$ Horiz. $=0.204 \mathrm{in}^{3 * 7.77 \mathrm{ksi}=1,585 " \# ~}$
Maximum allowable load for 72 " o.c. post spacing

$$
\begin{aligned}
& \mathrm{W}=1,585 " \# * 8 /(67.625 " 2)=2.77 \mathrm{pli}=33.3 \mathrm{plf} \\
& \mathrm{P}=1,585 " \# * 4 / 67.625 "=94 \#
\end{aligned}
$$

Max span for 50 plf load $=\left(8^{*} 1,585 /(50 / 12)\right)^{1 / 2}=55^{\prime \prime}$ clear span
Rail fasteners -Bottom rail connection block to post \#10x1.5" 55 PHP SMS Screw

Check shear @ post (6005-T5)
2x $\mathrm{F}_{\text {upost }}$ dia screw x Post thickness x SF
$\mathrm{V}=2 \cdot 38 \mathrm{ksi} \cdot 0.1697 " \cdot 0.10 " \cdot \frac{1}{3(\mathrm{FS})}=$
$\mathrm{V}=430$ \#/screw
Since minimum of 2 screws used for each
Allowable load $=2 \cdot 430 \#=860 \#$
Rail Connection to RCB

2 screws each en
\#8 Tek screw to 6063-T6
$2 * 30 \mathrm{ksi} \cdot 0.1309 " \cdot 0.07 " \cdot \frac{1}{3}=232 \# /$ screw


Allowable tension $=2 * 232=464 \#$
OK

## Picket bottom rail

Bottom rail strength
6063-T6 Aluminum alloy
For 72" on center posts; $L=72 "-2.375 "-1 " \times 2=$ 67.625 "

Calculate lateral torsional buckling strength per ADM F.4.2.1
$\mathrm{J}=0.001752 \mathrm{in}^{4}$
$\mathrm{r}_{\mathrm{ye}}=\left((.125 .5 / .227) *\left(0+.038^{*}\right.\right.$.


Area: 0.446 sq in Perim: 9.940 in

Ixx: 0.125 in^4 $^{\wedge}$
lyy: 0.193 in^4 $^{\wedge}$
Kxx: 0.529 in
Kyy: 0.658 in
Cxx: 1.151 in
Cyy: 0.852 in
Sxx: 0.108 in^3
Syy: 0.227 in^3
$\left.\left.001752 * 67.625^{2}\right)^{1 / 2}\right)^{1 / 2}=0.927$ in
$\lambda=67.625 " /\left(.927^{\prime \prime}\right)=73.0$
$\mathrm{C}_{\mathrm{c}}=78.4$ for 6063-T6
$\mathrm{F}_{\mathrm{c}} / \Omega=15.2 \mathrm{ksi}$
Check local buckling of vertical legs:
$\mathrm{b} / \mathrm{t}=1.5 " / .07 "=21.4>12.6$
$\mathrm{F}_{\mathrm{c}} / \Omega=155 / 21.4=7.24 \mathrm{ksi}$


Allowable Moments $\rightarrow$ Horiz. $=0.227 \mathrm{in}^{3}{ }^{*} 7.24 \mathrm{ksi}=1,643$ " $\#$
Vertical $=0.108 \mathrm{in}^{3} \cdot 15.2 \mathrm{ksi}=1,642$ " $\#$

Rail fasteners -Bottom rail connection block to post
\#10x1.5" 55 PHP SMS Screw
Check shear @ post (6005-T5)
2x F upostX dia screw x Post thickness x SF
Eq 5.4.3-2
$\mathrm{V}=38 \mathrm{ksi} \cdot 0.19 " \cdot 0.1 " \cdot \frac{1}{3(\mathrm{FS})}=$
V $=240$ \#/screw
Since minimum of 2 screws used for each
Allowable load $=2 \cdot 240 \#=480 \#$
Rail Connection to RCB
2 screws each end
\#8 Tek screw to 6063-T6
ADM Eq. 5.4.3-1

$2 * 30 \mathrm{ksi}{ }^{\prime} 0.1248 " \cdot 0.07 " \cdot 1 / 3=175 \# /$ screw
Allowable shear $=2 * 175=350 \#$
OK

## MID RAIL

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{xx}}=0.123 \mathrm{in}^{4} \\
& \mathrm{I}_{\mathrm{yy}}=0.177 \mathrm{in}^{4} \\
& \mathrm{~S}_{\mathrm{xx}}=0.115 \mathrm{in}^{3} \\
& \mathrm{~S}_{\mathrm{yy}}=0.209 \mathrm{in}^{3} \\
& \mathrm{r}_{\mathrm{xx}}=0.579 \mathrm{in} \\
& \mathrm{r}_{\mathrm{yy}}=0.695 \mathrm{in} \\
& \mathrm{Z}_{\mathrm{xx}}=0.1916 \mathrm{in}^{3} \\
& \mathrm{Z}_{\mathrm{yy}}=0.2397 \mathrm{in}^{3}
\end{aligned}
$$



Allowable stresses ADM Table 2-21 6063-T6 Aluminum For vertical loads:
$\mathrm{F}_{\mathrm{Cb}} \rightarrow \mathrm{R}_{\mathrm{b}} / \mathrm{t}=1.75^{\prime \prime} / 0.080^{\prime \prime}=21.6$
$\mathrm{F}_{\mathrm{c}} / \Omega=15.2 \mathrm{ksi}$
$\mathrm{M}_{\mathrm{a}}=0.1916 \mathrm{in}^{3 *} 15.2 \mathrm{ksi}=2,912^{\prime \prime} \#$
For horizontal loads:
$\mathrm{b} / \mathrm{t}=0.8667^{\prime \prime} / .0625^{\prime \prime}=13.9$
$\mathrm{F}_{\mathrm{c}} / \Omega=15.2 \mathrm{ksi}$
$\mathrm{M}_{\mathrm{a}}=0.2397 \mathrm{in}^{3 *} 15.2 \mathrm{ksi}=3,643$ "\#


Allowable vertical loading:
Distributed load $=2,912 " \# * 8 / 72^{2}=4.493$ pli $=53.93$ plf
Point load $=2,912 " \# * 4 / 72=162 \#$
Allowable horizontal loading:
Distributed load $=3,643 " \# * 8 / 72 "{ }^{\prime 2}=5.622 \mathrm{pli}=67.46 \mathrm{plf}$
Point load $=3,643 " \# * 4 / 72 "=202 \#$

## WIND SCREEN MID RAIL

Standard bottom rail with infill
Refer to bottom rail calculations for rail properties.
Check bottom rail strength for span used in privacy screen.
Midrail glass infill when installed in rail will stiffen the
 flanges (legs) continuously so that the flanges are equivalent to flat elements supported on both edges:
From ADM Table 2-21 section 16.
$\mathrm{b} / \mathrm{t}=1.1 " / 0.07=15.7<22$
Therefore $\mathrm{F}_{\mathrm{ca}}=15.2 \mathrm{ksi}$

Strength of infill piece:
$\mathrm{I}_{\mathrm{xx}}: 0.0162 \mathrm{in}^{4}$
$\mathrm{I}_{\mathrm{yy}}: 0.0378 \mathrm{in}^{4}$
$\mathrm{S}_{\mathrm{xx}}: 0.0422 \mathrm{in}^{3}$
$\mathrm{S}_{\mathrm{yy}}: 0.0490 \mathrm{in}^{3}$

$\mathrm{F}_{\mathrm{ca}}=15.2 \mathrm{ksi}$
When inserted into bottom rail determine the effective strength:
proportion of load carried by infill:
$\mathrm{I}_{\mathrm{yy}}$ infill/ $\mathrm{I}_{\mathrm{yy}}$ net $=0.0378 /(.0378+0.172)=0.18$
$0.046 / 0.18=0.256$ or $0.204 /(1-.18)=0.249<0.256$ so standard bottom rail controls

Allowable Moments $\rightarrow$ Horiz. $=1,585$ "\#/(1-.18) = 1,933" $\#$
Maximum allowable load for 70 " screen width $L=70 "-1$ "*2-2.375*2 $=63.25$ "

$$
\begin{aligned}
& \mathrm{W}=1,933 " \# * 8 /(63.25 " 2)=3.87 \mathrm{pli}=46.39 \mathrm{plf} \\
& \mathrm{P}=1,933 " \# * 4 / 63.25 "=122 \#
\end{aligned}
$$

Maximum allowable load for 60 " screen width $L=60 "-1 " * 2-2.375 * 2=53.25$ "

$$
\begin{aligned}
& \mathrm{W}=1,933 " \# * 8 /(53.25 " 2)=5.45 \mathrm{pli}=65.4 \mathrm{plf} \\
& \mathrm{P}=1,933 " \# * 4 / 53.25 "=145 \#
\end{aligned}
$$

STANDARD POST RAIL CONNECTION BLOCK

Can be used to connect top, mid and bottom rails to standard or 4"x4" post face, walls or other end butt connection conditions.


Rail snaps over block and is secured with either silicone adhesive or \#8 tek screws.
Connection strength to post or wall: (2) \#10x1.5" 55 PHP SMS Screw
Check shear @ post (6005-T5)
$F_{\text {upost }}$ dia screw x Post thickness / SF
Eq 5.4.3-2
V= 38 ksi $\cdot 0.19 " \cdot 0.1 " \cdot \frac{1}{3(\mathrm{SF})}=240 \# /$ screw for standard post
Since minimum of 2 screws used for each, Allowable load $=2 \cdot 240 \#=480 \#$
For 4" x 4 " post:
$\mathrm{V}=38 \mathrm{ksi} \cdot 0.19 " \cdot 0.15 " \cdot \frac{1}{3(\mathrm{SF})}=360 \# /$ screw for standard post
Since minimum of 2 screws used for each, Allowable load $=2 \cdot 360 \#=720 \#$
Connections to walls and other surfaces is dependant on supporting material. Alternative fasteners may be used for connections to steel, concrete or wood.

For connection to wood post:
(2) \#10 x2-1/2" wood screws strength from NDS Table $11 \mathrm{M}, \mathrm{G} \geq 0.43$
$Z^{\prime}=n^{*} C_{D} * Z=2$ screws* $1.6^{*} 140 \#=448 \#$
For connection to cold formed steel stud - 22 ga min based on CCFSS T.B. V2\#1 $\mathrm{Z}=2$ * $175 \#=350$ \#

For connection to concrete or CMU - (2) 3/16" x 2" Tapcon screws
$\mathrm{Z}=2 * 290=580 \#$

## WALL MOUNT END CAPS

End cap is fastened to the top rail with
2) \#10×1" 55 PHP SMS Screws

2x $\mathrm{F}_{\text {upost }}$ dia screw x Cap thickness x SF
Eq 5.4.3-2
$\mathrm{V}=2 * 38 \mathrm{ksi} \cdot 0.19 " \cdot 0.15 " \cdot \frac{1}{3(\mathrm{FS})}=$
722\#/screw, 1,444 \# per connection
Connection to wall shall use either:
\#14x 1-1/2" wood screw to wood, minimum 1" penetration into solid wood.

Allowable load $=2 * 175 \#=350 \#$
Wood shall have a $\mathrm{G} \geq 0.43$
From NDS Table 12M


For connection to steel studs or sheet metal blocking
Use \#12 self drilling screws.
Minimum metal thickness is 18 gauge, 43 mil ( 0.0451 ")
Allowable load $=280 \# /$ screw

|  | 1/4-1 | crew | \#12- | crew | \#10-1 | crew * | \#8-18 | rew * | \#6 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Thinnest Component | Shear | Pullout | Shear | Pullout | Shear | Pullout | Shear | Puilout | Shear | Pullout |
| $0.1017^{\prime \prime}$ | 1000 | 320 | 890 | 280 | 780 | 245 | 675 | 210 | 560 | 175 |
| $0.0713^{\prime \prime}$ | 600 | 225 | 555 | 195 | 520 | 170 | 470 | 145 | 395 | 125 |
| $0.0566{ }^{\prime \prime}$ | 420 | 180 | 390 | 155 | 370 | 135 | 340 | 115 | 310 | 95 |
| $0.0451{ }^{\prime \prime}$ | 300 | 140 | 280 | 120 | 260 | 105 | 240 | 90 | 220 | 75 |
| $0.0347^{\prime \prime}$ | 200 | 110 | 185 | 95 | 175 | 80 | 165 | 70 | 150 | 60 |
| Notes: <br> 1. Design values are based on CCFSS Technical Bulletin Vol. 2, No. 1 which outlines the proposed AISI Specification provisions for screw connections. For shear connections the cold-formed steel section should be evaluated for tension. <br> 2. Based on $\mathrm{Fy}=33 \mathrm{ksi}, \mathrm{Fu}=45 \mathrm{ksi}$ minimum. Adjust values for other steel strengths. <br> 3. ${ }^{*}=$ Refer to Table 1 for limits on recommended total steel thickness of connected parts. |  |  |  |  |  |  |  |  |  |  |

## Wall Mounted End Caps - Cont.

For connection to masonry or concrete use $3 / 16$ screw-in anchor-
Allowable shear load $\geq 290$ \# per Tapcon
ESR-2202 | Most Widely Accepted and Trusted
Page 5 of 5
TABLE 2-EXAMPLE ALLOWABLE STRESS DESIGN VALUES FOR ILLUSTRATIVE PURPOSES FOR TAPCON WITH ADVANCED THREADFORM TECHNOLOGY ANCHOR ${ }^{1,2,3,4,5,6,7,8}$

| NOMINAL ANCHOR DIAMETER (inch) | EFFECTIVE EMBEDMENT DEPTH (inches) | ALLOWABLE LOADS (pounds) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Tension |  |  |  | Shear |
|  |  | 2,500 psi | 3,000 psi | 4,000 psi | 5,000 psi | 2,500 psi |
| 3/16 | 1.5 | 260 | 285 | 330 | 370 | 290 |
| $1 / 4$ | 1.5 | 350 | 385 | 445 | 495 | 525 |

For SI: 1 inch $=25.4 \mathrm{~mm}, 1 \mathrm{lbf}=4.45 \mathrm{~N}, 1 \mathrm{psi}=0.006895 \mathrm{MPa}$.
${ }^{1}$ Single anchor with static tension load only.
${ }^{2}$ Concrete determined to remain uncracked for the life of the anchorage.
${ }^{3}$ Load combination 9-2 from ACI 318 Section 9.2 (no seismic loading).
${ }^{4}$ Thirty percent dead load and 70 percent live load, controlling load combination $1.2 \mathrm{D}+1.6 \mathrm{~L}$.
${ }^{5}$ Calculation of weighted average for $\alpha=0.3^{\star} 1.2+0.7^{*} 1.6=1.48$.
${ }^{6}$ Normal weight concrete
${ }^{7} c_{\mathrm{a} 1}=c_{\mathrm{a} 2}>c_{\mathrm{ac}}$.
${ }^{8} h \geq h_{\text {min }}$.
${ }^{9}$ Condition B in accordance with ACI 318 Section D.4.4 applies.

300 and 350 Series end caps use same fasteners and have identical strengths


Excerpts from National Design Specifications For Wood Construction
Table 11.2A Lag Screw Reference Withdrawal Design Values, ${ }^{11}$

| Specific Gravity, $G^{2}$ | Lag Screw Diameter, D |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1/4" | 5/16" | 3/8" | 7/16" | 1/2" | 5/8" | 3/4" | 7/8" | 1" | 1-1/8" | 1-1/4" |
| 0.73 | 397 | 469 | 538 | 604 | 668 | 789 | 905 | 1016 | 1123 | 1226 | 1327 |
| 0.71 | 381 | 450 | 516 | 579 | 640 | 757 | 868 | 974 | 1077 | 1176 | 1273 |
| 0.68 | 357 | 422 | 484 | 543 | 600 | 709 | 813 | 913 | 1009 | 1103 | 1193 |
| 0.67 | 349 | 413 | 473 | 531 | 587 | 694 | 796 | 893 | 987 | 1078 | 1167 |
| 0.58 | 281 | 332 | 381 | 428 | 473 | 559 | 641 | 719 | 795 | 869 | 940 |
| 0.55 | 260 | 307 | 352 | 395 | 437 | 516 | 592 | 664 | 734 | 802 | 868 |
| 0.51 | 232 | 274 | 314 | 353 | 390 | 461 | 528 | 593 | 656 | 716 | 775 |
| 0.50 | 225 | 266 | 305 | 342 | 378 | 447 | 513 | 576 | 636 | 695 | 752 |
| 0.49 | 218 | 258 | 296 | 332 | 367 | 434 | 498 | 559 | 617 | 674 | 730 |
| 0.47 | 205 | 242 | 278 | 312 | 345 | 408 | 467 | 525 | 580 | 634 | 686 |
| 0.46 | 199 | 235 | 269 | 302 | 334 | 395 | 453 | 508 | 562 | 613 | 664 |
| 0.44 | 186 | 220 | 252 | 283 | 312 | 369 | 423 | 475 | 525 | 574 | 621 |
| 0.43 | 179 | 212 | 243 | 273 | 302 | 357 | 409 | 459 | 508 | 554 | 600 |
| 0.42 | 173 | 205 | 235 | 264 | 291 | 344 | 395 | 443 | 490 | 535 | 579 |
| 0.41 | 167 | 198 | 226 | 254 | 281 | 332 | 381 | 428 | 473 | 516 | 559 |
| 0.40 | 161 | 190 | 218 | 245 | 271 | 320 | 367 | 412 | 455 | 497 | 538 |
| 0.39 | 155 | 183 | 210 | 236 | 261 | 308 | 353 | 397 | 438 | 479 | 518 |
| 0.38 | 149 | 176 | 202 | 227 | 251 | 296 | 340 | 381 | 422 | 461 | 498 |
| 0.37 | 143 | 169 | 194 | 218 | 241 | 285 | 326 | 367 | 405 | 443 | 479 |
| 0.36 | 137 | 163 | 186 | 209 | 231 | 273 | 313 | 352 | 389 | 425 | 460 |
| 0.35 | 132 | 156 | 179 | 200 | 222 | 262 | 300 | 337 | 373 | 407 | 441 |
| 0.31 | 110 | 130 | 149 | 167 | 185 | 218 | 250 | 281 | 311 | 339 | 367 |
| 1. Tabulated withdrawal design values, W , for lag screw connections shall be multiplied by all applicable adjustment factors (see Table 10.3.1). 2. Specific gravity,G, shall be determined in accordance with Table 11.3.3A. |  |  |  |  |  |  |  |  |  |  |  |

## Table 11K LAG SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections ${ }^{\mathbf{1 , 2 , 3}, 4}$

$\square$ for sawn lumber or SCL with ASTM A653, Grade 33 steel side plate (for $\mathrm{t}_{5}<1 / 4^{\text {" }}$ ) or ASTM A36 steel side plate (for $t_{s}=1 / 4^{\prime \prime}$ )
(tabulated lateral design values are calculated based on an assumed length of lag screw penetration, p, into the main member equal to 8D)

|  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \text { ? } \\ & \frac{1}{i n} \\ & \text { il } \\ & 0 \frac{1}{1} \end{aligned}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \mathbf{t}_{\mathbf{5}} \\ & \text { in. } \end{aligned}$ | D in. | $\mathrm{Z}_{\\|}$ <br> lbs. | $\begin{gathered} \mathbf{Z}_{\mathbf{1}} \\ \text { libs. } \end{gathered}$ | $\mathrm{Z}_{\\|}$ lbs. | $Z_{\perp}$ <br> lbs. | $\mathrm{Z}_{n}$ <br> lbs. | $Z_{\perp}$ lbs. | $\mathrm{Z}_{\mathrm{ll}}$ <br> lbs. | $z_{\perp}$ lbs. | $\mathrm{Z}_{\\|}$ lbs. | $\begin{aligned} & \mathbf{Z}_{\perp} \\ & \text { lbs. } \end{aligned}$ | $\mathrm{Z}_{\\|}$ <br> lbs. | $\begin{aligned} & \mathbf{Z}_{\perp} \\ & \text { lbs. } \end{aligned}$ | $\mathrm{Z}_{11}$ lbs. | $\begin{gathered} \mathbf{Z}_{\perp} \\ \text { libs. } \end{gathered}$ | $\mathrm{Z}_{\mathrm{I}}$ <br> lbs. | $\begin{aligned} & \mathbf{Z}_{\mathbf{\perp}} \\ & \text { lbs. } \end{aligned}$ | $\begin{aligned} & \mathrm{Z}_{\\|} \\ & \mathrm{l} \mathrm{bs} . \end{aligned}$ | $Z_{\perp}$ lbs. | $\begin{aligned} & \mathbf{Z}_{\text {Il }} \\ & \text { lbs. } \end{aligned}$ | $Z_{\perp}$ lbs. |
| 0.075 | 1/4 | 170 | 130 | 160 | 120 | 150 | 110 | 150 | 110 | 150 | 100 | 140 | 100 | 140 | 100 | 130 | 90 | 130 | 90 | 130 | 90 |
| (14 gage) | 5/16 | 220 | 160 | 200 | 140 | 190 | 130 | 190 | 130 | 190 | 130 | 180 | 120 | 180 | 120 | 170 | 110 | 170 | 110 | 160 | 100 |
|  | 3/8 | 220 | 160 | 200 | 140 | 200 | 130 | 190 | 130 | 190 | 120 | 180 | 120 | 180 | 120 | 170 | 110 | 170 | 100 | 170 | 100 |
| 0.105 | 1/4 | 180 | 140 | 170 | 130 | 160 | 120 | 160 | 120 | 160 | 110 | 150 | 110 | 150 | 110 | 140 | 100 | 140 | 100 | 140 | 90 |
| (12 gage) | 5/16 | 230 | 170 | 210 | 150 | 200 | 140 | 200 | 140 | 190 | 130 | 190 | 130 | 190 | 120 | 180 | 110 | 170 | 110 | 170 | 110 |
|  | 3/8 | 230 | 160 | 210 | 140 | 200 | 140 | 200 | 130 | 200 | 130 | 190 | 120 | 190 | 120 | 180 | 110 | 180 | 110 | 170 | 110 |
| 0.120 | 1/4 | 190 | 150 | 180 | 130 | 170 | 120 | 170 | 120 | 160 | 120 | 160 | 110 | 160 | 110 | 150 | 100 | 150 | 100 | 140 | 100 |
| (11 gage) | 5/16 | 230 | 170 | 210 | 150 | 210 | 140 | 200 | 140 | 200 | 140 | 190 | 130 | 190 | 130 | 180 | 120 | 180 | 120 | 180 | 110 |
|  | 3/8 | 240 | 170 | 220 | 150 | 210 | 140 | 210 | 140 | 200 | 130 | 200 | 130 | 190 | 120 | 180 | 110 | 180 | 110 | 180 | 110 |
| 0.134 | $1 / 4$ | 200 | 150 | 180 | 140 | 180 | 130 | 170 | 130 | 170 | 120 | 160 | 120 | 160 | 110 | 150 | 110 | 150 | 100 | 150 | 100 |
| (10 gage) | 5/16 | 240 | 180 | 220 | 160 | 210 | 150 | 210 | 140 | 200 | 140 | 200 | 130 | 200 | 130 | 190 | 120 | 180 | 120 | 180 | 120 |
|  | 3/8 | 240 | 170 | 220 | 150 | 220 | 140 | 210 | 140 | 210 | 140 | 200 | 130 | 200 | 130 | 190 | 120 | 190 | 120 | 180 | 110 |
| 0.179 | 1/4 | 220 | 170 | 210 | 150 | 200 | 150 | 200 | 140 | 190 | 140 | 190 | 130 | 190 | 130 | 180 | 120 | 170 | 120 | 170 | 120 |
| (7 gage) | 5/16 | 260 | 190 | 240 | 170 | 230 | 160 | 230 | 160 | 230 | 150 | 220 | 150 | 220 | 150 | 210 | 130 | 200 | 130 | 200 | 130 |
|  | 3/8 | 270 | 190 | 250 | 170 | 240 | 160 | 240 | 160 | 230 | 150 | 220 | 140 | 220 | 140 | 210 | 130 | 210 | 130 | 200 | 130 |
| 0.239 | $1 / 4$ | 240 | 180 | 220 | 160 | 210 | 150 | 210 | 150 | 200 | 140 | 190 | 140 | 190 | 130 | 180 | 120 | 180 | 120 | 180 | 120 |
| (3 gage) | 5/16 | 300 | 220 | 280 | 190 | 270 | 180 | 260 | 180 | 260 | 170 | 250 | 160 | 250 | 160 | 230 | 150 | 230 | 150 | 230 | 140 |
|  | 3/8 | 310 | 220 | 280 | 190 | 270 | 180 | 270 | 180 | 260 | 170 | 250 | 160 | 250 | 160 | 240 | 140 | 230 | 140 | 230 | 140 |
|  | 7/16 | 420 | 290 | 390 | 260 | 380 | 240 | 370 | 240 | 360 | 230 | 350 | 220 | 350 | 220 | 330 | 200 | 330 | 200 | 320 | 190 |
|  | 1/2 | 510 | 340 | 470 | 300 | 460 | 290 | 450 | 280 | 440 | 270 | 430 | 260 | 420 | 260 | 400 | 240 | 400 | 230 | 390 | 230 |
|  | $5 / 8$ | 770 | 490 | 710 | 430 | 680 | 400 | 680 | 400 | 660 | 380 | 640 | 370 | 630 | 360 | 600 | 330 | 590 | 330 | 580 | 320 |
|  | 3/4 | 1110 | 670 | 1020 | 590 | 980 | 560 | 970 | 550 | 950 | 530 | 920 | 500 | 910 | 500 | 860 | 450 | 850 | 450 | 840 | 440 |
|  | 7/8 | 1510 | 880 | 1390 | 780 | 1330 | 730 | 1320 | 710 | 1280 | 690 | 1250 | 650 | 1230 | 650 | 1170 | 590 | 1160 | 590 | 1140 | 570 |
|  | 1 | 1940 | 1100 | 1780 | 960 | 1710 | 910 | 1700 | 890 | 1650 | 860 | 1600 | 820 | 1590 | 810 | 1500 | 740 | 1480 | 730 | 1460 | 710 |
| 1/4 | 1/4 | 240 | 180 | 220 | 160 | 210 | 150 | 210 | 150 | 200 | 140 | 200 | 140 | 190 | 130 | 180 | 120 | 180 | 120 | 180 | 120 |
|  | 5/16 | 310 | 220 | 280 | 200 | 270 | 180 | 270 | 180 | 260 | 170 | 250 | 170 | 250 | 160 | 230 | 150 | 230 | 150 | 230 | 140 |
|  | 3/8 | 320 | 220 | 290 | 190 | 280 | 180 | 270 | 180 | 270 | 170 | 260 | 160 | 250 | 160 | 240 | 150 | 240 | 140 | 230 | 140 |
|  | 7/16 | 480 | 320 | 440 | 280 | 420 | 270 | 420 | 260 | 410 | 250 | 390 | 240 | 390 | 230 | 370 | 220 | 360 | 210 | 360 | 210 |
|  | 1/2 | 580 | 390 | 540 | 340 | 520 | 320 | 510 | 320 | 500 | 310 | 480 | 290 | 480 | 290 | 460 | 270 | 450 | 260 | 440 | 260 |
|  | $5 / 8$ | 850 | 530 | 780 | 470 | 750 | 440 | 740 | 440 | 720 | 420 | 700 | 400 | 690 | 400 | 660 | 370 | 650 | 360 | 640 | 350 |
|  | 3/4 | 1200 | 730 | 1100 | 640 | 1060 | 600 | 1050 | 590 | 1020 | 570 | 990 | 540 | 980 | 530 | 930 | 490 | 920 | 480 | 900 | 470 |
|  | 7/8 | 1600 | 930 | 1470 | 820 | 1410 | 770 | 1400 | 750 | 1360 | 720 | 1320 | 690 | 1310 | 680 | 1240 | 630 | 1220 | 620 | 1200 | 600 |
|  | 1 | 2040 | 1150 | 1870 | 1000 | 1800 | 950 | 1780 | 930 | 1730 | 900 | 1680 | 850 | 1660 | 840 | 1570 | 770 | 1550 | 760 | 1530 | 740 |

1. Tabulated lateral design values, Z , shall be multiplied by all applicable adjustment factors (see Table 10.3.1).
2. Tabulated lateral design values, $Z$, are for "reduced body diameter" lag screws (see Appendix Table L2) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p , into the main member equal to 8 D ; dowel bearing strengths, $\mathrm{F}_{\mathrm{e}}$, of 61,850 psi for ASTMA653, Grade 33 steel and $87,000 \mathrm{psi}$ for ASTMA36 steel and screw bending yield strengths, $F_{y b}$, of 70,000 psi for $D=1 / 4^{\prime \prime}, 60,000$ psi for $D=5 / 16^{\prime \prime}$, and 45,000 psi for $D \geq 3 / 8^{\prime \prime}$.
3. Where the lag screw penetration, $p$, is less than $8 D$ but not less than $4 D$, tabulated lateral design values, $Z$, shall be multiplied by $p / 8 D$ or lateral design values shall be calculated using the provisions of 11.3 for the reduced penetration.
4. The length of lag screw penetration, p , not including the length of the tapered tip, E (see Appendix Table L ) , of the lag screw into the main member shall not be less than 4D. See 11.1.4.6 for minimum length of penetration, $\mathrm{p}_{\min }$.

Table 11M W00D SCREWS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections ${ }^{1,2,3}$
for sawn lumber or SCL with ASTM 653, Grade 33 steel side plate
(tabulated lateral design values are calculated based on an assumed length of wood screw penetration, p, into the main member equal to 10D)

|  |  |  |  |  |  |  |  | $\begin{aligned} & \text { 管立 } \\ & \text { i E } \\ & \text { O } \\ & \hline \end{aligned}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| in. | in. |  | lbs. |
| 0.036 | 0.138 | 6 | 89 | 76 | 70 | 69 | 66 | 62 | 60 | 54 | 53 | 52 |
| (20 gage) | 0.151 | 7 | 99 | 84 | 78 | 76 | 72 | 68 | 67 | 60 | 59 | 57 |
|  | 0.164 | 8 | 113 | 97 | 89 | 87 | 83 | 78 | 77 | 69 | 67 | 66 |
| 0.048 | 0.138 | 6 | 90 | 77 | 71 | 70 | 67 | 63 | 61 | 55 | 54 | 53 |
| (18 gage) | 0.151 | 7 | 100 | 85 | 79 | 77 | 74 | 69 | 68 | 61 | 60 | 58 |
|  | 0.164 | 8 | 114 | 98 | 90 | 89 | 84 | 79 | 78 | 70 | 69 | 67 |
| 0.060 | 0.138 | 6 | 92 | 79 | 73 | 72 | 68 | 64 | 63 | 57 | 56 | 54 |
| (16 gage) | 0.151 | 7 | 101 | 87 | 81 | 79 | 75 | 71 | 70 | 63 | 61 | 60 |
|  | 0.164 | 8 | 116 | 100 | 92 | 90 | 86 | 81 | 79 | 71 | 70 | 68 |
|  | 0.177 | 9 | 136 | 116 | 107 | 105 | 100 | 94 | 93 | 83 | 82 | 79 |
|  | 0.190 | 10 | 146 | 125 | 116 | 114 | 108 | 102 | 100 | 90 | 88 | 86 |
| 0.075 | 0.138 | 6 | 95 | 82 | 76 | 75 | 71 | 67 | 66 | 59 | 58 | 57 |
| (14 gage) | 0.151 | 7 | 105 | 90 | 84 | 82 | 78 | 74 | 72 | 65 | 64 | 62 |
|  | 0.164 | 8 | 119 | 103 | 95 | 93 | 89 | 84 | 82 | 74 | 73 | 71 |
|  | 0.177 | 9 | 139 | 119 | 110 | 108 | 103 | 97 | 95 | 86 | 84 | 82 |
|  | 0.190 | 10 | 150 | 128 | 119 | 117 | 111 | 105 | 103 | 92 | 91 | 88 |
|  | 0.216 | 12 | 186 | 159 | 147 | 145 | 138 | 130 | 127 | 114 | 112 | 109 |
|  | 0.242 | 14 | 204 | 175 | 162 | 158 | 151 | 142 | 139 | 125 | 123 | 120 |
| 0.105 | 0.138 | 6 | 104 | 90 | 84 | 82 | 79 | 74 | 73 | 66 | 65 | 63 |
| (12 gage) | 0.151 | 7 | 114 | 99 | 92 | 90 | 86 | 81 | 80 | 72 | 71 | 69 |
|  | 0.164 | 8 | 129 | 111 | 103 | 102 | 97 | 92 | 90 | 81 | 80 | 77 |
|  | 0.177 | 9 | 148 | 128 | 119 | 116 | 111 | 105 | 103 | 93 | 91 | 89 |
|  | 0.190 | 10 | 160 | 138 | 128 | 125 | 120 | 113 | 111 | 100 | 98 | 96 |
|  | 0.216 | 12 | 196 | 168 | 156 | 153 | 146 | 138 | 135 | 122 | 120 | 116 |
|  | 0.242 | 14 | 213 | 183 | 170 | 167 | 159 | 150 | 147 | 132 | 130 | 126 |
| 0.120 | 0.138 | 6 | 110 | 95 | 89 | 87 | 83 | 79 | 77 | 70 | 68 | 67 |
| (11 gage) | 0.151 | 7 | 120 | 104 | 97 | 95 | 91 | 86 | 84 | 76 | 75 | 73 |
|  | 0.164 | 8 | 135 | 117 | 109 | 107 | 102 | 96 | 94 | 85 | 84 | 82 |
|  | 0.177 | 9 | 154 | 133 | 124 | 121 | 116 | 110 | 107 | 97 | 95 | 93 |
|  | 0.190 | 10 | 166 | 144 | 133 | 131 | 125 | 118 | 116 | 104 | 103 | 100 |
|  | 0.216 | 12 | 202 | 174 | 162 | 159 | 152 | 143 | 140 | 126 | 124 | 121 |
|  | 0.242 | 14 | 219 | 189 | 175 | 172 | 164 | 155 | 152 | 137 | 134 | 131 |
| 0.134 | 0.138 | 6 | 116 | 100 | 93 | 92 | 88 | 83 | 81 | 73 | 72 | 70 |
| (10 gage) | 0.151 | 7 | 126 | 110 | 102 | 100 | 96 | 91 | 89 | 80 | 79 | 77 |
|  | 0.164 | 8 | 141 | 122 | 114 | 112 | 107 | 101 | 99 | 89 | 88 | 86 |
|  | 0.177 | 9 | 160 | 139 | 129 | 127 | 121 | 114 | 112 | 101 | 100 | 97 |
|  | 0.190 | 10 | 173 | 149 | 139 | 136 | 130 | 123 | 121 | 109 | 107 | 104 |
|  | 0.216 | 12 | 209 | 180 | 167 | 164 | 157 | 148 | 145 | 131 | 129 | 126 |
|  | 0.242 | 14 | 226 | 195 | 181 | 177 | 169 | 160 | 157 | 141 | 139 | 135 |
| 0.179 | 0.138 | 6 | 126 | 107 | 99 | 97 | 92 | 86 | 84 | 76 | 74 | 72 |
| (7 gage) | 0.151 | 7 | 139 | 118 | 109 | 107 | 102 | 95 | 93 | 84 | 82 | 80 |
|  | 0.164 | 8 | 160 | 136 | 126 | 123 | 117 | 110 | 108 | 96 | 95 | 92 |
|  | 0.177 | 9 | 184 | 160 | 148 | 145 | 138 | 129 | 127 | 113 | 111 | 108 |
|  | 0.190 | 10 | 198 | 172 | 159 | 156 | 149 | 140 | 137 | 122 | 120 | 117 |
|  | 0.216 | 12 | 234 | 203 | 189 | 186 | 178 | 168 | 165 | 149 | 146 | 143 |
|  | 0.242 | 14 | 251 | 217 | 202 | 198 | 190 | 179 | 176 | 159 | 156 | 152 |
| $\begin{gathered} 0.239 \\ (3 \text { gage }) \end{gathered}$ | 0.138 | 6 | 126 | 107 | 99 | 97 | 92 | 86 | 84 | 76 | 74 | 72 |
|  | 0.151 | 7 | 139 | 118 | 109 | 107 | 102 | 95 | 93 | 84 | 82 | 80 |
|  | 0.164 | 8 | 160 | 136 | 126 | 123 | 117 | 110 | 108 | 96 | 95 | 92 |
|  | 0.177 | 9 | 188 | 160 | 148 | 145 | 138 | 129 | 127 | 113 | 111 | 108 |
|  | 0.190 | 10 | 204 | 173 | 159 | 156 | 149 | 140 | 137 | 122 | 120 | 117 |
|  | 0.216 | 12 | 256 | 218 | 201 | 197 | 187 | 176 | 172 | 154 | 151 | 147 |
|  | 0.242 | 14 | 283 | 241 | 222 | 217 | 207 | 194 | 190 | 170 | 167 | 162 |

1. Tabulated lateral design values, $Z$, shall be multiplied by all applicable adjustment factors (see Table 10.3.1).
2. Tabulated lateral design values, $Z$, are for rolled thread wood screws (see Appendix L) inserted in side grain with screw axis perpendicular to wood fibers; screw penetration, p , into the main member equal to 10D; dowel bearing strength, $\mathrm{F}_{\mathrm{e}}$, of 61,850 psi for ASTM A653, Grade 33 steel and screw bending yield strengths, $\mathrm{F}_{\mathrm{y} \text { t, }}$ of 100,000 psi for $0.099^{\prime \prime} \leq \mathrm{D} \leq 0.142^{\prime \prime}, 90,000$ psi for $0.142^{\prime \prime}<\mathrm{D} \leq 0.177^{\prime \prime}, 80,000$ psi for $0.177^{\prime \prime}<\mathrm{D} \leq 0.236^{\prime \prime}, 70,000$ psi for $0.236^{\prime \prime}<\mathrm{D} \leq 0.273^{\prime \prime}$.
3. Where the wood screw penetration, $p$, is less than 10 D but not less than 6 D , tabulated lateral design values, $\bar{Z}$, shall be multiplied by $p / 10 \mathrm{D}$ or lateral design values shall be calculated using the provisions of 11.3 for the reduced penetration.

EDWARD C. ROBISON, PE
10012 Creviston Dr NW
Gig Harbor, WA 98329
253-858-0855/Fax 253-858-0856 elrobison@narrows.com

VERTICAL PICKET INSTALLATIONS
LOAD CASES:
Picket rail Dead load $=5$ plf for 42 " rail height or less.

Loading:
Horizontal load to top rail from in-fill:
$25 \mathrm{psf} * \mathrm{H} / 2$
Post moments
$\mathrm{M}_{\mathrm{i}}=25 \mathrm{psf} * \mathrm{H} / 2 * \mathrm{~S} * \mathrm{H}=$

$$
=(25 / 2) * S * H^{2}
$$

For top rail loads:
$\mathrm{M}_{\mathrm{c}}=200 \# * \mathrm{H}$
$\mathrm{M}_{\mathrm{u}}=50 \mathrm{plf} * \mathrm{~S} * \mathrm{H}$

For wind load surface area:
Pickets $3 / 4$ " wide by 4 " on center
Top rail $=3$ " maximum
Post $=2.375^{\prime \prime}$
Area for typical $5^{\prime}$, section by $42^{\prime \prime}$ high:
$42 " * 2.375 "+3 " * 60 "+1.7 " * 57.625$ "
$+0.75 * 36^{*} 18=863.7$ in $^{2}$
$\%$ surface $/$ area $=863.7 /(60 " * 42 ")=$ 34.3\%

Wind load for 25 psf equivalent load $=$ $25 / 0.343=72.9 \mathrm{psf}$


## Picket Railing

Series 100
Top rail loading
50 plf or 200 lb conc.
Infill: 25 psf
Bottom rail loading 50 lb conc.

Picket infill panel is


Loading $\rightarrow 25 \mathrm{psf} \rightarrow 4$
$1 / 2$ " O.C $\rightarrow 25$ psf $\cdot .375=9.4$ plf
$\mathrm{M}=\frac{9.4 / 12\left(42^{\prime \prime}-6 "\right) 2}{8}=127 \mathrm{lb}-\mathrm{in}$
For 5/8" Square pickets $t=0.062 " \rightarrow S=0.625^{3} / 6-0.5^{3} / 6=0.020$ in $^{3}$
$\mathrm{f}_{\mathrm{b}}=\frac{127 \mathrm{lb}-\mathrm{in}}{0.02 \mathrm{in}^{3}}=6,350 \mathrm{psi}$

For 50 lb conc load $\rightarrow 1 \mathrm{SF}-\min 2$ pickets

$$
\begin{aligned}
& \mathrm{M}=\frac{50 / 2 \cdot 36 "}{4}=225 \mathrm{lb}-\mathrm{in} \\
& \mathrm{f}_{\mathrm{b}}=\frac{225 \mathrm{lb}-\mathrm{in}}{0.02 \mathrm{in}^{3}}=11,250 \mathrm{psi}
\end{aligned}
$$


$\mathrm{b} / \mathrm{t}=.5 " / .0625 "=8<22.8$
6063-T6 $\mathrm{F}_{\mathrm{c}} / \Omega=15.2 \mathrm{ksi}$ - compression ADM Table 2-21
Maximum allowable moment on picket $=15.2 \mathrm{ksi}^{*} 0.02 \mathrm{in}^{3}=304 \mathrm{in}-\mathrm{lb}$
Maximum span $=304 \mathrm{in}-\mathrm{lb} * 4 / 25 \mathrm{lb}=48.6$ " - concentrated load or
(304in-lb* $8 / 0.783 \mathrm{lb} / \mathrm{in})^{1 / 2}=55.73$ in (based on 25 psf uniform load)
48.6 " is the maximum allowable picket length.

## Connections

Pickets to top and bottom rails direct bearing -ok
Lap into top and bottom rail - 1 " into bottom rail and $5 / 8$ " into top rail.
Allowable bearing pressure $=21 \mathrm{ksi}($ ADM Table 2-24 line 6)
Picket filler snaps between pickets to pressure lock pickets in place.


Bearing surface $=1.375 " * .062 "=0.085 \mathrm{in}^{2}$
Allowable bearing $=0.085 \mathrm{in}^{2} * 21 \mathrm{ksi}=1,785 \#$
Withdrawal prevented by depth into rails.

## PICKETS 3/4" ROUND

Area: 0.170 sq in
$\mathrm{I}_{\mathrm{xx}}: 0.0093 \mathrm{in}^{4} \quad \mathrm{~S}_{\mathrm{xx}}: 0.022 \mathrm{in}^{3}$
$\mathrm{I}_{\mathrm{yy}}: 0.0083 \mathrm{in}^{4} \quad \mathrm{~S}_{\mathrm{yy}}: 0.022 \mathrm{in}^{3}$
$\mathrm{r}_{\mathrm{xx}}: 0.234267$ in $\mathrm{Z}_{\mathrm{xx}}: 0.03611 \mathrm{in}^{3}$
$\mathrm{r}_{\mathrm{yy}}: 0.221764$ in $\mathrm{Z}_{\mathrm{yy}}: 0.03133 \mathrm{in}^{3}$
$\mathrm{R}_{\mathrm{b}} / \mathrm{t}=0.75 " / .0625 "=12<31.2$
$\mathrm{F}_{\mathrm{C}} / \Omega=15.2 \mathrm{ksi}$
Allowable moment, $\mathrm{M}_{\mathrm{a}}=0.03611 \mathrm{in}^{3 *} 15.2 \mathrm{ksi}=549$ " $\#$
For 50 lb conc load $\rightarrow 1 \mathrm{SF}-\min 2$ pickets

$$
\mathrm{M}=\frac{50 / 2 \cdot 36 "}{4}=225 \mathrm{lb} \text {-in }<549 " \#
$$

Max picket span $=549 " \# * 4 / 25 \#=87 "$
Connections
\#10 screw in to top and bottom infill pieces. Shear strength =
$2 \times \mathrm{F}_{\text {upost }}$ dia screw x trail x SF ADM Eq 5.4.3-2
$\mathrm{V}=38 \mathrm{ksi} \cdot 0.19 " \cdot 0.1 " \cdot \frac{1}{3(\mathrm{FS})}=240 \#$


## PICKETS 3/4" SQUARE

$\mathrm{Z}_{\mathrm{x}}=0.0685 \mathrm{in}^{3}$
$b / t=0.55 " / 0.1 "=5.5$
Allowable moment,
$\mathrm{M}_{\mathrm{a}}=0.0685 \mathrm{in}^{3 *} 15.2 \mathrm{ksi}=1,041{ }^{\prime \prime} \#$
For 50 lb conc load $\rightarrow 1 \mathrm{SF}-\mathrm{min} 2$ pickets

$$
\mathrm{M}=\frac{50 / 2 \cdot 36 "}{4}=225 \mathrm{lb}-\mathrm{in}<1,041 " \#
$$



Max picket span $=1,041 " \# * 4 / 25 \#=167 "$

Connections
Pickets to top and bottom rails direct bearing for lateral loads -ok \#10 screw in to top and bottom infill pieces. Shear strength $=$
2x $\mathrm{F}_{\text {upost }}$ dia screw x $\mathrm{t}_{\text {rail }} \mathrm{x}$ SF ADM Eq 5.4.3-2 $\mathrm{V}=30 \mathrm{ksi} \cdot 0.19 " \cdot 0.1 " \cdot \frac{1}{3(\mathrm{FS})}=190 \#$

Area: 0.288 sq in Perim: 6.03 in lxx: 0.0196 in^4 lyy: 0.0190 in^4 Kxx: 0.261 in Kyy: 0.257 in
Cxx: 0.392 in
Cyy: 0.376 in
Sxx: 0.050 in^3 Syy: 0.051 in^3


PICKET

GRAB RAIL BRACKET
Loading 200 lb concentrated load or 50 plf distributed load

Grab rail bracket - 1-7/8" long
Aluminum extrusion 6063-T6
Allowable load on bracket:
Vertical load:
Critical point @ 1.8 " from rail to root of double radius, $\mathrm{t}=0.25$ "
$\mathrm{M}=\mathrm{P} * 1.8$ " or WS* 1.8 "
where $\mathrm{P}=200 \#, \mathrm{~W}=50 \mathrm{plf}$ and
$S=$ tributary rail length to bracket.
Determine allowable Moment:
$\mathrm{F}_{\mathrm{T}}=20 \mathrm{ksi}, \mathrm{F}_{\mathrm{C}}=20 \mathrm{ksi}$
From ADM Table 2-24
$\mathrm{S}_{\mathrm{V}}=1.875{ }^{*} * 0.25^{2} / 6=0.0195 \mathrm{in}^{3}$
$\mathrm{M}_{\text {Vall }}=0.0195 \mathrm{in}^{3 *} 20 \mathrm{ksi}=390$ " $\#$
Determine allowable loads:
For vertical load:

$$
\begin{aligned}
& \mathrm{P}_{\text {all }}=390 " \# / 1.8 "=217 \# \\
& \mathrm{~S}_{\text {all }}=217 \# / 50 \mathrm{plf}=44^{\prime \prime}
\end{aligned}
$$



Vertical loading will control bracket strength.
Allowable load may be increased proportionally by increasing the bracket length.
For 5' Post spacing: $5^{\prime} / 4.33^{\prime} * 1.875^{\prime \prime}=2.165^{\prime \prime}-2-11 / 64^{\prime \prime}$
Grab rail connection to the bracket:
Two countersunk self drilling \#8 screws into $1 / 8^{\prime \prime}$ wall tube Shear $-2 \mathrm{~F}_{\mathrm{tu}} \mathrm{Dt} / 3=2 * 30 \mathrm{ksi} * 0.164 " * 0.125 " / 3 * 2$ screws $=820 \#(A D M 5.4 .3)$
Tension $-1.2 \mathrm{DtF}_{\text {ty }} / 3=1.2 * .164{ }^{\prime} * 0.125 " * 25 \mathrm{ksi}^{*} 2$ screws $/ 3=410 \#$

For residential installations only 200\# concentrated load is applicable.

Connection to support:
Maximum tension occurs for outward Horizontal force $=200$ \#:

Determine tension from $\sum \mathrm{M}$ about C $0=\mathrm{P} * 5$ " - T* 1.25 "
$\mathrm{T}=200 \# *(5-1.25) " / 1.25 "=600 \#$
From $\sum$ forces - no shear force in anchor occurs from horizontal load

Vertical force $=200 \#+17$ \# (DL):
Determine tension from $\sum \mathrm{M}$ about C $0=\mathrm{P} * 2.5$ " $-\mathrm{T}^{*} 1.25^{\prime \prime}$
$\mathrm{T}=217 \# * 2.5^{\prime \prime} / 1.25 "=434 \#$
From $\sum$ forces $-\mathrm{Z}=\mathrm{P}=217$ \#

## CONNECTION TO STANDARD POST (0.1"

WALL)
For 200\# bracket load:


For handrails mounted to 0.1 " wall thickness
aluminum tube.
$1 / 4$ " self drilling hex head screw at post screw slot - effective thickness $=0.125$ "
Shear - $2 \mathrm{~F}_{\text {tu }} \mathrm{Dt} / 3$ (ADM 5.4.3)
$2 * 38 \mathrm{ksi} * 0.25 " * 0.125 " / 3=792 \#$
Tension - Pullout ADM 5.4.2.1
$\mathrm{P}_{\mathrm{t}}=1.2 \mathrm{DtF}_{\mathrm{tu}} / 3=1.2 * \cdot 25^{*} .125^{*} 38 \mathrm{ksi} / 3=475 \#$

Required attachment strength

$$
\begin{aligned}
& \mathrm{T}=434 \# \text { and } \mathrm{V}=217 \# \text { or } \\
& \mathrm{T}=600 \# \text { and } \mathrm{V}=0
\end{aligned}
$$

Two screws minimum , $\mathrm{T}_{\mathrm{a}}=2 * 475 \#=950 \#>600 \#$ OK

## 6 SCREW POST

For mounting to the 6 screw post with screw at the center screw slot:
For 200\# bracket load:
For handrails mounted to 0.1 " wall thickness aluminum tube.
$1 / 4$ " self drilling hex head screw at post screw slot -
thickness $=0.125$ "
This ignores contribution form the sides of the screw slot and considers only the bottom where there is full thread engagement.

Safety Factor $=2.34$ for guard rail application.
Shear - $\mathrm{F}_{\mathrm{tu}} \mathrm{Dt} / 2.34$ (2015ADM 5.5)
38ksi*0.2496"*0.125"/2.34=507\#
Tension - Pullout 2015 ADM 5.4.1
$\left.\mathrm{P}_{\mathrm{t}}=0.58 \mathrm{~A}_{\mathrm{sn}} \mathrm{F}_{\mathrm{tu}}\left(\mathrm{t}_{\mathrm{c}}\right)\right] / 2.34=$
$0.58 * 0.682 * 38 \mathrm{ksi}(0.10) / 2.34=642 \#$
Required attachment strength
$\mathrm{T}=434 \#$ and $\mathrm{V}=217 \#$ or
$\mathrm{T}=600$ \# and $\mathrm{V}=0$
For combined shear and tension (Vertical load case)
$\left(\mathrm{T} / \mathrm{P}_{\mathrm{t}}\right)^{2}+\left(\mathrm{V} / \mathrm{Z}_{\mathrm{a}}\right)^{2} \leq 1$
$(434 / 642)^{2}+(217 / 508)^{2}=0.639 \leq 1$
Or

$(434 / 642)+(217 / 508)=1.10 \leq 1.2$
Or
$600 \leq 642 \#$ therefore okay

GRAB RAIL -1-1/2" $\times 1 / \mathbf{8}^{\prime \prime}$ WALL 6063-T6 Aluminum
Pipe properties:
O.D. $=1.50$ "
I.D. $=1.25^{\prime \prime}, \mathrm{t}=0.125^{\prime \prime}$
$\mathrm{A}=0.540 \mathrm{in}^{2}$

$\mathrm{S}=0.172 \mathrm{in}^{3}$
$\mathrm{Z}=0.237 \mathrm{in}^{3}$

Allowable stresses from ADM Table 2-21
$\mathrm{R}_{\mathrm{b}} / \mathrm{t}=0.625 / 0.125=5<70$;
$\mathrm{F}_{\mathrm{c}} / \Omega=27.7-1.70 * 5^{1 / 2}=23.90 \mathrm{ksi}$, Use 22.7 ksi max
$\mathrm{M}_{\mathrm{a}}=\mathrm{Z} * \mathrm{~F}_{\mathrm{y}}=0.237 * 22.7 \mathrm{ksi}=5,380$ '\# $=448.3$ '\#
Allowable Span:
Check based on simple span and cantilevered section.


$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}(\mathrm{lg})^{2} / 8 \text { or }=\mathrm{P}(\mathrm{lg}) / 4 \text { Solve for } \mathrm{lg}: \\
& \mathrm{lg}=(8 \mathrm{M} / \mathrm{w})^{1 / 2}=\left[8^{*}\left(448.3^{\prime} \# / 50 \mathrm{plf}\right)\right]^{1 / 2}=8.47 \text { ' or } \\
& \mathrm{lg}=(4 \mathrm{M} / \mathrm{P})=4^{*} 448.3^{\prime} \# / 200 \#=8.97^{\prime} \\
& \text { Maximum allowable span for supports at both ends }=8^{\prime}-55 / 8^{\prime} \text { "-Controlling span }
\end{aligned}
$$

For cantilevered section

$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}(\mathrm{lc})^{2} / 2 \text { or }=\mathrm{P}(\mathrm{lc}) \text { Solving for } \mathrm{lc} \\
& \mathrm{lc}=(2 \mathrm{M} / \mathrm{w}) 1 / 2=\left(2^{*} 448.3^{\prime} \# / 50 \mathrm{plf}\right)^{1 / 2}=4.23^{\prime} \text { or } \\
& \mathrm{lc}=\mathrm{M} / \mathrm{P}=448.3^{\prime} \# / 200 \#=2.24^{\prime}=2^{\prime}-27 / 8^{\prime \prime}----- \text { Controlling span }
\end{aligned}
$$

Locate splice within lc of a support.

GRAB RAIL -1-1/2" $\times$ 1/8" WALL

## Stainless Steel

Pipe properties:
O.D. $=1.50$ "
I.D. $=1.25^{\prime \prime}, \mathrm{t}=0.125^{\prime \prime}$
$\mathrm{A}=0.540 \mathrm{in}^{2}$
$\mathrm{I}=0.129 \mathrm{in}^{4}$
$\mathrm{S}=0.172 \mathrm{in}^{3}$
$\mathrm{Z}=0.236 \mathrm{in}^{3}$ minimum
$\mathrm{r}=0.488 \mathrm{in}, \mathrm{J}=0.255 \mathrm{in}^{4}$


Stainless steel tube in accordance with ASTM A554-10
Rail Service Loading:
Brushed stainless steel, $\mathrm{F}_{\mathrm{y}} \geq 45 \mathrm{ksi}, \mathrm{F}_{\mathrm{u}} \geq 91 \mathrm{ksi}$ (Requires Mill Certification Tests)
$\emptyset \mathrm{M}_{\mathrm{n}}=0.9^{*} 1.25^{*} \mathrm{~S}^{*} \mathrm{~F}_{\mathrm{y}}=0.9^{*} 1.25 * 0.172 * 45 \mathrm{ksi}$
$\emptyset \mathrm{M}_{\mathrm{n}}=8,707.5^{\prime \prime} \#$
$\mathrm{M}_{\mathrm{l}}=\varnothing \mathrm{M}_{\mathrm{n}} / 1.6=5,442.2 \prime \#=453.52^{\prime} \#$
Allowable Span:
Check based on simple span and cantilevered section.


$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}(\mathrm{lg})^{2 / 8} \text { or }=\mathrm{P}(\mathrm{lg}) / 4 \text { Solve for } \mathrm{lg}: \\
& \lg =(8 \mathrm{M} / \mathrm{w})^{1 / 2}=\left[8^{*}\left(453.52^{\prime} \# / 50 \mathrm{plf}\right)\right]^{1 / 2}=8.518^{\prime} \text { or } \\
& \lg =(4 \mathrm{M} / \mathrm{P})=4^{*} 453.52^{\prime} \# / 200 \#=9.07
\end{aligned}
$$

Maximum allowable span for supports at both ends $=8^{\prime}-63 / 16^{\prime \prime}$-Controlling span
For cantilevered section

$$
\begin{aligned}
& \mathrm{M}=\mathrm{w}(\mathrm{lc})^{2} / 2 \text { or }=\mathrm{P}(\mathrm{lc}) \text { Solving for lc } \\
& \mathrm{lc}=(2 \mathrm{M} / \mathrm{w})^{1 / 2}=\left(2^{*} 453.52^{\prime} \# / 50 \mathrm{plf}\right)^{1 / 2}=4.259^{‘} \text { or } \\
& \mathrm{lc}=\mathrm{M} / \mathrm{P}=453.52^{\prime} \# / 200 \#=2.268^{\prime}=2^{\prime}-33 / 16^{\prime \prime}----- \text { Controlling span }
\end{aligned}
$$

Locate splice within lc of a support.

STAINLESS STEEL CABLE IN-FILL:
S: MAX. 6 FT. O.C. SPACING POSTS


Cable railing- Deflection/ Preload/ Loading relationship


Cable Strain $=\in=\frac{\mathrm{C}_{\mathrm{ta}} \cdot \mathrm{L}}{\mathrm{A} \cdot \mathrm{E}}$
$\mathrm{C}_{\mathrm{t}}=\mathrm{C}_{\mathrm{tl}}+\mathrm{C}_{\mathrm{ta}} \quad \mathrm{C}_{\mathrm{ti}}=$ installation tension
$\mathrm{C}_{\mathrm{ta}}=\frac{\in \mathrm{EA}}{\mathrm{L}}=$ Cable tension increase from loading

From cable theory
$\mathrm{C}_{\mathrm{t}}=\underline{l \bullet p} \quad$ for concentrated load $4 \Delta$

To calculate allowable load for a given deflection:
Calculate $\quad \in=\left[\left[(l / 2)^{2}+\Delta^{2}\right]^{1 / 2} \bullet 2-l\right]$
Then calculate $\mathrm{C}_{\mathrm{ta}}=\frac{\in \mathrm{AE}}{\mathrm{L}}$
Then calculate $\mathrm{C}_{\mathrm{t}}=\mathrm{C}_{\mathrm{tl}}+\mathrm{C}_{\mathrm{ta}}$
Then calculate load to give the assumed $\Delta$ for concentrated load

$$
\mathrm{P}=\frac{\mathrm{C}_{\mathrm{t}} 4 \Delta}{l}
$$

For uniform load - idealize deflection as triangular applying cable theory

$$
\mathrm{C}_{\mathrm{t}}=\frac{\mathrm{W} l^{2}}{8 \Delta}
$$

Solving for $\mathrm{W}=\frac{\mathrm{C}_{\mathrm{t}} 8 \Delta}{l^{2}}$

See spreadsheet pages based on 36' maximum cable length and 3" clear cable spacing.
Cable rail loading requirements
UBC table 16-B Line 9
Guardrail components 25 psf over entire area
IBC 1607.7.1.2 Components
50 lbs Conc. load over 1 sf
Application to cables
-Uniform load $=\frac{25 \mathrm{psf} \cdot 3^{\prime \prime}}{12^{\prime \prime}}=6.25 \mathrm{plf}$
-Concentrated load 1 sf
3 cables minimum
$50 / 3=16.7 \mathrm{lbs}$ on $4 "$ sphere
Produces 8.63 lb upward and downward on adjacent cables.

Deflection - since cables are 3" O.C. and
 maximum opening width $=4$ "
for $1 / 8^{\prime \prime}$ cable $\Delta_{\text {all }}=4 "-(3-1 / 8)=11 / 8^{\prime \prime}$
for $3 / 16$ " cable $\Delta_{\text {all }}=4 "-(3-3 / 16)=13 / 16 "$
Cable Strain:

$$
\begin{aligned}
& \varepsilon=\sigma / \mathrm{E} \text { and } \Delta_{\mathrm{L}}=\mathrm{L} \varepsilon \\
& \Delta_{\mathrm{L}}=\mathrm{L}(\mathrm{~T} / \mathrm{A}) / \mathrm{E}=\mathrm{L}\left(\mathrm{~T} / 0.0276 \mathrm{in}^{2}\right) / 26 \times 10^{6} \mathrm{psi}
\end{aligned}
$$

Maximum cable free span length $=60.5 " / 2-2.375^{\prime \prime}=27.875 "$
Additionally cable should be able to safely support 200 lb point load such as someone standing on a cable. This is not a code requirement but is recommended to assure a safe installation.

| Cable railing |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cable deflection calculations |  |  |  |  |  |
| Cable $=1 / 8^{\prime \prime}$ dia (area in^2) = |  | 0.0123 |  |  |  |
| Modulus of elasticity ( $\mathrm{E}, \mathrm{psi}$ ) = |  | 26000000 |  |  |  |
| Cable strain $=\mathrm{Ct} /\left(\mathrm{A}^{*} \mathrm{E}\right){ }^{*} \mathrm{~L}$ (in) $=$ additional strain from imposed loading |  |  |  |  |  |
| Cable installation load (lbs) = |  | 150 |  |  |  |
| Total Cable length ( ft ) = |  | 36 |  |  |  |
| Cable free span (inches) = |  | 35 |  |  |  |
| Calculate strain for a given displacement (one span) |  |  |  | Imposed Cable load giving displ. |  |
| delta (in) | strain (in) | Ct net (lb) | Ct tot (lbs) | Conc. Load (lb) | Uniform ld (plf) |
| 0.25 | 0.00357 | 2.6 | 152.6 | 4.4 | 3.0 |
| 0.375 | 0.00803 | 5.9 | 155.9 | 6.7 | 4.6 |
| 0.55 | 0.01728 | 12.8 | 162.8 | 10.2 | 7.0 |
| 0.75 | 0.03213 | 23.7 | 173.7 | 14.9 | 10.2 |
| 1 | 0.05710 | 42.2 | 192.2 | 22.0 | 15.1 |
| 2 | 0.22783 | 168.3 | 318.3 | 72.7 | 49.9 |
| 2.5 | 0.35534 | 262.4 | 412.4 | 117.8 | 80.8 |
| 3.13 | 0.55542 | 410.2 | 560.2 | 200.4 | 137.4 |


| Cable railing |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cable deflection calculations |  |  |  |  |  |
| Cable $=1 / 8^{\prime \prime}$ dia (area in^2) = |  | 0.0123 |  |  |  |
| Modulus of elasticity ( $\mathrm{E}, \mathrm{psi}$ ) = |  | 26000000 |  |  |  |
| Cable strain $=\mathrm{Ct} /\left(\mathrm{A}^{*} \mathrm{E}\right){ }^{*} \mathrm{~L}(\mathrm{in})=$ additional strain from imposed loading |  |  |  |  |  |
| Cable installation load (lbs) = |  | 200 |  |  |  |
| Total Cable length (ft) = |  | 36 |  |  |  |
| Cable free span (inches) = |  | 35 |  |  |  |
| Calculate strain for a given displacement (one span) |  |  |  | Imposed Cable load giving displ. |  |
| delta (in) | strain (in) | Ct net (lb) | Ct tot (lbs) | Conc. Load (lb) | Uniform ld (plf) |
| 0.25 | 0.00357 | 2.6 | 202.6 | 5.8 | 4.0 |
| 0.375 | 0.00803 | 5.9 | 205.9 | 8.8 | 6.1 |
| 0.55 | 0.01728 | 12.8 | 212.8 | 13.4 | 9.2 |
| 0.75 | 0.03213 | 23.7 | 223.7 | 19.2 | 13.1 |
| 1 | 0.05710 | 42.2 | 242.2 | 27.7 | 19.0 |
| 2 | 0.22783 | 168.3 | 368.3 | 84.2 | 57.7 |
| 2.5 | 0.35534 | 262.4 | 462.4 | 132.1 | 90.6 |
| 3.02 | 0.51734 | 382.1 | 582.1 | 200.9 | 137.8 |

## Cable induced forces on posts:



Cable tension forces occur where cables either change direction at the post or are terminated at a post.

Top rail acts as a compression element to resist cable tension forces. The top rail infill piece inserts tight between the posts so that the post reaction occurs by direct bearing.

For 400 Series top rail no infill is used. Top rail extrusion is attached to post with (6) \#8 screws in shear with total allowable shear load of $6 * 325 \#=1,950 \#$ Up to eight \#8 screws may be used on a post if required to develop adequate shear transfer between the post and the 400 series top rail.

Bottom rail when present will be in direct bearing to act as a compression element.

When no bottom rail is present the post anchorage shall be designed to accommodate a shear load in line with the cables of $7 * 205 \# * 1.25=1,784 \#$

End post Cable loading
Cable tension - 200\#/ Cable no in-fill load
$w=\frac{200 \#}{3 "}=66.67 \# / \mathrm{in} \quad \mathrm{M}_{\mathrm{w}}=\frac{(39 ")^{2} \cdot 66.67 \# / \mathrm{in}}{8}=12,676 \# "$

Typical post reactions for 200\# installation tension :
11 cables*200\#/2 $=1100 \#$ to top and bottom rails
For loaded Case

- 3 Cables @ center 220.7\# ea based on 6' o.c. posts, 35" cable clear span post deflection will reduce tension of other cables.

$$
\begin{aligned}
& \Delta=\left[\mathrm{Pa}^{2} \mathrm{~b}^{2} /(3 \mathrm{~L})+2 \mathrm{~Pa}\left(3 \mathrm{~L}^{2}-4 \mathrm{a}^{2}\right) / 24\right] / \mathrm{EI}= \\
& \Delta=\left[220.7 * 15^{2 *} 24^{2} /(3 * 39)+220.7 * 15\left(3 * 39^{2}-4 * 15^{2}\right) / 24\right] /(10,100,000 * 0.863)=0.086 "
\end{aligned}
$$

Cable tension reduction for deflection will go from 200 at end cables to 271-220.7 at center, linear reduction $=(200-50.3) /(39 / 2)=7.7 \mathrm{pli}$

$$
\begin{aligned}
& \mathrm{M}_{\text {conc }}=220.7 \# \bullet 15 " / 2+220.7 \# \bullet 18 "+(3 *(200-7.7 * 3))+(6 *(200-7.7 * 6))+ \\
& (9 *(200-7.7 * 9))+12 *(200-7.7 * 12)+15 *(200-7.7 * 15) / 2 \\
& \mathrm{M}_{\text {conc }}=10,183 \# "
\end{aligned}
$$

Typical post reactions for 200\# installation tension with 50\# infill load:
11 cables $* 200 \# / 2+3 *(221-200) / 2=1132 \#$ to top and bottom rails.
Typical post reactions for 200\# installation tension with 25 psf infill load:
11 cables*207.5\#/2 $=1,141$ \# to top and bottom rails.

For 200 \# Conc load on middle cable tension
599.2\# tension, post deflection will reduce tension of other cables
$\Delta=\left[\mathrm{Pa}^{2} \mathrm{~b}^{2} /(3 \mathrm{LEI})=\left[599.2^{*} 18^{2} 21^{2} /(3 * 39 * 10100000 * 0.863)=0.084\right.\right.$
Cable tension reduction for deflection will go from 200 at end cables to 52 at center cables, linear reduction (200-52)/19.5" $=7.6$ pli.
$\mathrm{M}_{200}=599.2 \# / 2 \cdot 18 "+(3) \bullet(200-7.6 * 3)+(6)(200-7.6 * 6)+(9)(200-7.6 * 9)+(12)$
$\left(200-7.6^{*} 12\right)+(15)(200-7.6 * 15)+(18)(200-7.6 * 18) / 2=11,200 \#$ "
Post strength $=17,560$ "\# (Weak axis for standard six screw post)
No reinforcement required.
Standard Cable anchorage okay.
Typical post reactions for 200\# installation tension with 200\# infill load on center cable:
11 cables $* 200 \# / 2+(600 \#-200) / 2=1,300 \#$ to top and bottom rails.
Typical post reactions for 200\# tension with 200\# infill load on top or bottom cable:
11 cables*200\#/2+(600\#-200)*33/36 = 1,467\# to top and bottom rails.
Verify cable strength:
$\mathrm{F}_{\mathrm{y}}=110 \mathrm{ksi}$ Minimum tension strength $=1,869 \#$ for $1 / 8 " 1 \mathrm{x} 19$ cable
$\emptyset \mathrm{T}_{\mathrm{n}}=0.85 * 110 \mathrm{ksi}^{*} 0.0123=1,150 \#$
$\mathrm{T}_{\mathrm{s}}=\varnothing \mathrm{T}_{\mathrm{n}} / 1.6=1,150 \# / 1.6=718 \#$
Maximum cable pretension based on maximum service tension @ 200\# cable load is 440\#:

| $\Delta$ (in) | strain (in) | Ct net (lb) | Ct tot (lbs) | Conc. Load <br> (lb) | Uniform ld <br> (plf) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.19 | 0.00206 | 1.7 | 441.7 | 9.6 | 6.6 |
| 0.33 | 0.00622 | 5.1 | 445.1 | 16.8 | 11.5 |
| 2.437 | 0.33774 | 278.2 | 718.2 | 200.0 | 137.2 |
| EDWARD C. ROBISON, PE |  |  |  |  |  |
| 10012 Creviston Dr NW |  |  |  |  |  |
| Gig Harbor, WA 98329 |  |  |  |  |  |

CABLE LENGTH/SPAN OPTIONS:
For a maximum cable free span of 42" (Maximum post spacing of 44-3/8" on center)
The Maximum allowable cable length is $36^{\prime}$.
Required minimum cable installation tension is 373 \#

| Cable railing |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cable deflection calculations |  |  |  |  |  |
| Cable $=1 / 8$ " dia $($ area in^2) $=$ |  | 0.0123 |  |  |  |
| Modulus of elasticity ( $\mathrm{E}, \mathrm{psi}$ ) $=$ |  | 26000000 |  |  |  |
| Cable strain $=\mathrm{Ct} /(\mathrm{A} * \mathrm{E}) * \mathrm{~L}(\mathrm{in})=$ additional strain from imposed loading |  |  |  |  |  |
| Cable installation load (lbs) $=$ |  | 373 |  |  |  |
| Total Cable length ( ft ) = |  | 36 |  |  |  |
| Cable free span (inches) = |  | 42 |  |  |  |
| Calculate strain for a given displacement (one span) |  |  |  | Imposed Cable load giving displ. |  |
| delta (in) | strain (in) | Ct net (lb) | Ct tot (lbs) | Conc. Load (lb) | Uniform ld (plf) |
| 0.25 | 0.00298 | 2.2 | 375.2 | 8.9 | 5.1 |
| 0.375 | 0.00670 | 4.9 | 377.9 | 13.5 | 7.7 |
| 0.55 | 0.01440 | 10.6 | 383.6 | 20.1 | 11.5 |
| 0.75 | 0.02678 | 19.8 | 392.8 | 28.1 | 16.0 |
| 1 | 0.04759 | 35.2 | 408.2 | 38.9 | 22.2 |
| 2 | 0.19005 | 140.4 | 513.4 | 97.8 | 55.9 |
| 2.5 | 0.29657 | 219.0 | 592.0 | 141.0 | 80.6 |
| 3.03 | 0.43493 | 321.2 | 694.2 | 200.3 | 114.5 |

For a maximum cable length of $60^{\prime}$.
Maximum cable free span is 35 "
Required minimum cable installation tension is 349 \#.
Intermediate tensioning device is required (turnbuckle or similar device).

| Cable railing |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cable deflection calculations |  |  |  |  |  |
| Cable $=1 / 8^{\prime \prime}$ dia $($ area in^2) $=$ |  | 0.0123 |  |  |  |
| Modulus of elasticity ( $\mathrm{E}, \mathrm{psi}$ ) $=$ |  | 26000000 |  |  |  |
| Cable strain $=\mathrm{Ct} /\left(\mathrm{A}^{*} \mathrm{E}\right){ }^{*} \mathrm{~L}(\mathrm{in})=$ additional strain from imposed loading |  |  |  |  |  |
| Cable installation load (lbs) = |  | 349 |  |  |  |
| Total Cable length ( ft ) = |  | 60 |  |  |  |
| Cable free span (inches) = |  | 35 |  |  |  |
| Calculate strain for a given displacement (one span) |  |  |  | Imposed Cable load giving displ. |  |
| delta (in) | strain (in) | Ct net (lb) | Ct tot (lbs) | Conc. Load (lb) | Uniform ld (plf) |
| 0.25 | 0.00357 | 1.6 | 350.6 | 10.0 | 6.9 |
| 0.375 | 0.00803 | 3.6 | 352.6 | 15.1 | 10.4 |
| 0.55 | 0.01728 | 7.7 | 356.7 | 22.4 | 15.4 |
| 0.75 | 0.03213 | 14.2 | 363.2 | 31.1 | 21.3 |
| 1 | 0.05710 | 25.3 | 374.3 | 42.8 | 29.3 |
| 2 | 0.22783 | 101.0 | 450.0 | 102.8 | 70.5 |
| 2.5 | 0.35534 | 157.5 | 506.5 | 144.7 | 99.2 |
| 3.03 | 0.52075 | 230.8 | 579.8 | 200.8 | 137.7 |

NOTE: WHEN CABLE LENGTH EXCEEDS 36' AN ADDITIONAL TENSIONING DEVICE
IS REQUIRED TO TAKE UP CABLE STRAIN AND ASSURE ADEQUATE CABLE
PRETENSION, WHEN LENGTH EXCEEDS 72' THREE DEVICES ARE REQUIRED.

For a maximum cable pretension of 440\#.
Maximum allowable cable length is $98.4^{\prime}$.
Maximum cable free span is 35 "
Two intermediate tensioning devices are required (turnbuckle or similar device).

| Cable railing |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cable deflection calculations |  |  |  |  |  |
| Cable $=1 / 8^{\prime \prime}$ dia $($ area in^2) $=$ |  | 0.0123 |  |  |  |
| Modulus of elasticity ( $\mathrm{E}, \mathrm{psi}$ ) $=$ |  | 26000000 |  |  |  |
| Cable strain $=\mathrm{Ct} /\left(\mathrm{A}^{*} \mathrm{E}\right) * \mathrm{~L}(\mathrm{in})=$ additional strain from imposed loading |  |  |  |  |  |
| Cable installation load (lbs) $=$ |  | 440 |  |  |  |
| Total Cable length ( ft ) = |  | 98.4 |  |  |  |
| Cable free span (inches) = |  | 35 |  |  |  |
| Calculate strain for a given displacement (one span) |  |  |  | Imposed Cable load giving displ. |  |
| delta (in) | strain (in) | Ct net (lb) | Ct tot (lbs) | Conc. Load (lb) | Uniform ld (plf) |
| 0.25 | 0.00357 | 1.0 | 441.0 | 12.6 | 8.6 |
| 0.375 | 0.00803 | 2.2 | 442.2 | 19.0 | 13.0 |
| 0.55 | 0.01728 | 4.7 | 444.7 | 28.0 | 19.2 |
| 0.75 | 0.03213 | 8.7 | 448.7 | 38.5 | 26.4 |
| 1 | 0.05710 | 15.4 | 455.4 | 52.0 | 35.7 |
| 2 | 0.22783 | 61.6 | 501.6 | 114.6 | 78.6 |
| 2.5 | 0.35534 | 96.0 | 536.0 | 153.1 | 105.0 |
| 3.02 | 0.51734 | 139.8 | 579.8 | 200.1 | 137.2 |

For a maximum cable pretension of $440 \#$.
Maximum allowable cable length is $45.2^{\prime}$.
Maximum cable free span is 42 "
Intermediate tensioning device is required (turnbuckle or similar device).

| Cable railing |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Cable deflection calculations |  |  |  |  |  |
| Cable $=1 / 8$ dia (area in^2) $=$ | 0.0123 |  |  |  |  |
| Modulus of elasticity (E, psi) $=$ | 26000000 |  |  |  |  |
| Cable strain =Ct /(A*E) *L(in) = additional strain from imposed loading |  |  |  |  |  |
| Cable installation load (lbs) $=$ | 440 |  |  |  |  |
| Total Cable length (ft) = | 45.2 |  |  |  |  |
| Cable free span (inches) = | 42 |  |  |  |  |
| Calculate strain for a given displacement (one span) |  |  |  |  |  |
| delta (in) | strain (in) | Ct net (lb) | Ct tot (lbs) | Conc. Load (lb) | Uniform ld (plf) |
| 0.25 | 0.00298 | 1.8 | 441.8 | 10.5 | 6.0 |
| 0.375 | 0.00670 | 3.9 | 443.9 | 15.9 | 9.1 |
| 0.55 | 0.01440 | 8.5 | 448.5 | 23.5 | 13.4 |
| 0.75 | 0.02678 | 15.8 | 455.8 | 32.6 | 18.6 |
| 1 | 0.04759 | 28.0 | 468.0 | 44.6 | 25.5 |
| 2 | 0.19005 | 111.8 | 551.8 | 105.1 | 60.1 |
| 2.5 | 0.29657 | 174.5 | 614.5 | 146.3 | 83.6 |
| 3.03 | 0.43493 | 255.9 | 695.9 | 200.8 | 114.7 |

For a maximum post spacing of $\mathbf{6 0 \prime}$ on center with intermediate cable spreader.
Maximum allowable cable length is $144^{\prime}$. ( $1 / 8$ " cable may not exceed this length.)
Maximum cable free span is 27.625 " (Posts @ 60 " on center with center picket)
Required cable pretension is $354 \#$
Three intermediate tensioning devices are required (turnbuckle or similar device).

| Cable railing |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cable deflectio | lculations |  |  |  |  |
| Cable $=1 / 8^{\prime \prime} \mathrm{d}$ | (area in^2) $=$ | 0.0123 |  |  |  |
| Modulus of ela | (E, psi) $=$ | 26000000 |  |  |  |
| Cable strain $=$ | *E) *L(in) = | itional stra | m impose | ading |  |
| Cable installati | oad (lbs) = | 354 |  |  |  |
| Total Cable len | $(\mathrm{ft})=$ | 144 |  |  |  |
| Cable free spa | hes) = | 27.625 |  |  |  |
| Calculate strai | a given disp | ment (one |  | Imposed Cable | oad giving displ. |
| delta (in) | strain (in) | Ct net (lb) | Ct tot (lbs) | Conc. Load (lb) | Uniform ld (plf) |
| 0.25 | 0.00452 | 0.8 | 354.8 | 12.8 | 11.2 |
| 0.375 | 0.01018 | 1.9 | 355.9 | 19.3 | 16.8 |
| 0.55 | 0.02189 | 4.0 | 358.0 | 28.5 | 24.8 |
| 0.75 | 0.04069 | 7.5 | 361.5 | 39.3 | 34.1 |
| 1 | 0.07230 | 13.4 | 367.4 | 53.2 | 46.2 |
| 2 | 0.28809 | 53.2 | 407.2 | 117.9 | 102.4 |
| 2.5 | 0.44884 | 82.9 | 436.9 | 158.1 | 137.4 |
| 2.95 | 0.62302 | 115.0 | 469.0 | 200.3 | 174.1 |

For $1 / 8$ " diameter cable:
Cable pretension, free span and total length under no circumstance shall exceed the following limits.
MAXIMUM CABLE PRETENSION SHALL NOT EXCEED 440\#.
MAXIMUM CABLE FREE SPAN MAY NOT EXCEED 42".
MAXIMUM CABLE LENGTH SHALL NOT EXCEED 144’.

Cable installation parameters are dependent on each other and must be balanced for the specific installation as shown in the examples herein. When cable length increases the allowable free span decreases. When cable free span increases the allowable cable length decreases.

## Cable installation instructions:

The desired cable installation tension is 200 lbs for all runs.
Cable tension is determined by the turn of the nut method:
Cables are pulled tight by hand when setting the quick connect bracket. The cable tension is increased to 200 lbs minimum by straining the cable by 0.153 " ( $31^{\prime}$ length). This requires 8.5 turns of the threaded terminal from the snug condition which is attained when the cable is pulled tight by hand. For every 5 feet of cable above 31 ' the nut shall be turned an additional $1 / 2$ turn to achieve the required pretension. For every 5 feet of cable less than 31 ' the nut shall be turned $1 / 2$ turn less to achieve the required pretension.

When installing the cables start with the lowest then go to the highest cable and alternate back and forth until all cables are installed, installing the center cable last, working from largest number down to 1 as shown in illustration.

Recommended Cable Tensioning Sequence


